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Commentary

In this commentary we discuss our recent work on delivering 
an anti-GD2 CAR (chimeric antigen receptor) via homology 
independent targeted insertion (HITI) using the CRISPR/Cas9 
technology [1]. HITI relies on Non-Homologous End Joining 
(NHEJ) that is predominantly exploited by both dividing and 
non-dividing cells to repair double stranded DNA breaks 
(DSBs). We explore considerations when using HITI based 
strategies. Furthermore, we discuss a method for post-HITI 
CRISPR EnrichMENT (CEMENT) within the context of large-
scale clinical manufacturing of non-viral CAR-T cells [2].

Transgene Insertion Strategies and Genome Editing 
Biology

NHEJ is the primary mechanism for DNA repair of DSBs 
throughout the course of the cell cycle program. Unlike 
homology directed repair (HDR), which is active only during 
the G2 and S phase of the cell cycle, NHEJ is independent 
from the cell cycle. Therefore, it presents a unique strategy 
for therapeutic editing of non-activated T-cells. Many groups 
have described the use of HDR for performing targeted 
genomic insertion of a CAR into a variety of loci including 
TRAC, AAVS1, B2M, or PDCD1, where the activation state of the 
T-cell is imperative for a successful insertion [3-5]. In contrast, 
HITI, which utilizes NHEJ for target gene insertion, can be 
explored in non-activated T-cells, thereby facilitating rapid 
manufacturing of CAR-T cells. Outside T-cell editing, HITI has 
been explored for applications of knock-in of large reporter 
genes in ESCs (Embryonic Stem Cells) and post-mitotic cells 
[6]. Most importantly, HITI has also been explored in vivo in 

rat models [7]. Recently, in addition to the NHEJ and HDR 
pathways, HMEJ (Homology Mediated End Joining) has also 
been explored for insertion of therapeutic CARs into T-cells. 
This approach relies on short homology arms (~48 bp), which 
has been shown to have more efficient integration of larger 
genetic cargo compared to HDR-based approaches [8].

Repair Template Designs

In the last decade various vectors for delivering transgenes 
using nuclease-based genome editors have been established 
(Adeno associated viruses, mRNA, transposons, single stranded 
and double stranded DNA and plasmid donor DNA vectors) [1]. 
Unlike viral vectors, manufacturing plasmid DNA from bacteria 
is relatively easy and low-cost. Therefore, plasmid DNA has 
recently been explored more for T cell therapy. We employed 
the Nanoplasmid backbone which is only 450bp. The use of 
Nanoplasmid DNA technology is desirable for T cell therapy 
applications as it has been reported to have higher expression 
levels and reduces the cell transfection related toxic effects 
in comparison to dsDNA templates [9]. Furthermore, the 
timeline for production of clinical grade Nanoplasmid vectors 
is anticipated to be shorter and less cost intense as compared 
to viral vector based on our experience with non-GMP grade 
nanoplasmid [8].

For HITI, we and others have demonstrated 1 cut site (cs) 
to yield in higher KI efficiencies as compared to 0cs and 2cs 
[2,7]. In turn, for HDR some groups have been able to insert 
at high efficiencies without employing any cut sites [5,10]. 
Alternatively, Chavez and colleagues reported simultaneous 
editing of the insertion site locus and cutting within their HDR 
template delivered via an integrase deficient lentiviral vector 
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to enable targeted insertion of large transgenes. Here, they 
compared donor DNA with regular and truncated cut sites 
and determined that processing and linearization of donor 
DNA caused by the Cas9 RNP complex results in an enhanced 
knock-in efficiency [11].

CAR-T cell Enrichment Strategies

To achieve higher purity and CAR+ cell yield, enrichment 
methods to increase the target population needs to be 
considered. Early approaches in non-viral gene editing used 
feeder cells to aid the growth of the positively edited cell 
populations [12]. However, these methods are inconsistent 
and complex. Depending on the manufacturing feasibility 
and selection strategies, it can include metabolic selection 
through integration of a methothrexate (MTX) resistant 
version of the Dihydrofolate Reductase (DHFR-FS) or more 
complex methods through surface markers including, but 
not limited to tNGFR (truncated Low-affinity Nerve Growth 
Factor Receptor) or tEGFR (truncated Epidermal Growth Factor 
Receptor). We evaluated the DHFR-FS system versus separation 
column based tEGFR (truncated Epidermal Growth Factor 
Receptor) and tNGFR (truncated Low-affinity Nerve Growth 
Factor Receptor) based enrichment to compare the different 
approaches to selection of edited cells [13,14]. Importantly, 
we optimized the MTX treatment schedule and shortened 
the duration of MTX exposure. Our work demonstrates that 
by using the DHFR-FS system we can enable an efficient MTX-
based enrichment of transgene positive cells and generate 
anti-GD2 CAR-T cells with up to ~80% purity. The DHFR-FS 
system offers a more controlled, consistent and scalable 
alternative and allows for an easier implementation into 
large-scale manufacturing process, whereas the use of cell 
surface selection markers requires additional cell processing 

and purification steps, which can significantly decrease the 
cell yield and increase manufacturing complexity and cost.  
Alternatively, transgene knock-in into essential gene loci 
has also been explored for enrichment of transgene positive 
populations [15]. Recently, others have explored the use of  
HDR repair templates containing a splice acceptor and splice 
donor targeting the intronic sequence of endogenous surface 
receptor loci, thereby enabling the magnetic depletion of 
unedited cell populations [16]. However, both technologies 
are limited to targeted insertion into essential genes and 
surface receptors respectively.

Strategies for Building Closed System Scale Up Systems

Using a semi-closed system electroporation protocol, we 
show that the co-delivery of the genome editing components 
can be performed in a clinically relevant context. We establish 
a modular manufacturing process using the Maxcyte GTx 
electroporation unit that generated 5.5 x 108 – 3.6 x 109 
GD-2 CAR-T cells from a starting population of 5 x 108 T-cells 
in a G-REX 100M cell culture system, across 3 independent 
donors. The Maxcyte GTx, a clinically relevant electroporation 
platform, enables semi-closed or closed system flow-through 
electroporation. It can be aseptically connected to the G-REX 
(Wilson Wolf ) platform, offering a highly efficient method 
for closed system scale-up. To edit T cells on the Maxcyte 
GTx, we used the preset Expanded T-Cell 4 protocol, which 
has been optimized for electroporation of T cells. However, 
one should consider optimization of parameters such as 
electroporation voltage, pulse width, cell concentration, DNA 
vector concentration, electroporation buffer parameters, 
Cas9:gRNA ratio, time of electroporation, temperature, and 
pre-electroporation and post-electroporation handling of the 
T-cells to allow for the most efficient editing process.

 

 

 

 

 

 

 

 

Figure 1. Schematic representation of homology independent targeted insertion via CRISPR/Cas9 editing. The guide RNA is designed 
to target a specific site within the genomic sequence. The nanoplasmid contains the gene of interest, with an arrow pointing to the site, 
which is an internal cut site where the Cas9 will make a cut. The process shown in the schema shows the simultaneous cutting of the TRAC 
locus and the Nanoplasmid DNA by the RNP complex, which results in the insertion of the transgene into the TRAC locus via a homology 
independent targeted insertion.
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Investigating and Addressing Genotoxicity Events

As CRISPR/Cas9 therapies are more commonly being applied 
clinically, it is important to ensure their safe and effective 
use. CRISPR/Cas9 can cause unintended double-stranded 
breaks at off-target sites, leading to insertions, deletions, or 
translocations [17]. Careful selection of gRNA should involve 
an empirical design process. It's crucial to consider challenges 
like the presence of a PAM sequence near the target site, 
the gRNA's ability to form secondary structures, mismatch 
tolerance, delivery efficiency, and accessibility to chromatin. 
Therefore, the gRNA design process must incorporate in silico, 
and in vitro methods to screen gRNAs with efficient on-target 
and minimal to no off-target activity. The recent FDA approval 
of exagamglogene autotemcel (exa-cel) provides us with 
more insights into the standards that need to be established 
in the process [18]. We outline a roadmap for assessing and 
mitigating CRISPR/Cas9 genotoxicity events. When designing 
CRISPR/Cas9 gene editing therapies, it is important to 
consider early on mitigation strategies of off-target editing 
by carefully selecting and screening guides. We utilize in silico 
tools like COSMID (CRISPR Off-target Sites with Mismatches, 
Insertions, and Deletions) and CCTop (CRISPR/Cas9 Target 
Online Predictor) to exclude gRNAs with predicted high off-
target effects [19,20]. We selected a gRNA targeting TRAC, 
encoding a mismatch base for optimal on-target performance 
as confirmed via GUIDE-Seq [21]. Sequencing approaches 
like GUIDE-seq, CIRCLE-seq, Discover-seq, Digenome-seq, 
and SITE-seq combine sequencing data and in silico analysis 
to identify off-target effects and should be considered for 
off-target assessment [22-26]. It is important to note that 
these tools rely on the human reference genome, and for 
a more comprehensive off-target nomination, tools like 
CRISPRme, which account for human genetic diversity and 
perform variant-aware off-target assessment, are essential 
[27]. Post editing, next-generation sequencing (e.g. rhAMP 
Seq) should be used as it allows for quantification and precise 
identification of off-target mutations induced by CRISPR/
Cas9 by providing high-resolution sequencing data [28]. On-
target editing outcomes could include Indels, long deletions/
truncations, inversions, insertions, copy-neutral LOH (loss of 
heterozygosity), and chromothripsis [29]. While Indels are 
easier to detect, standard sequencing methods do not capture 
the full range of other outcomes. More complex methods, like 
long-read sequencing and single primer amplification, are 
required for comprehensive detection [29-31]. Additionally, 
on and off-target insertions can be assessed via Targeted 
Locus Amplification (TLA), which provides an unbiased way to 
assess insertion sites [32]. 

Previous reports have provided evidence of low-level 
chromosome 14 aneuploidy due to the editing of the TRAC 
locus by CRISPR/Cas9 using a clinically relevant gRNA [33]. 
Therefore, monitoring chromosomal translocations utilizing 
ddPCR (droplet digital PCR) over time should be considered 

for long-term patient follow up assessments. Tsuchida et al. 
conducted a systematic analysis of Cas9-induced chromosome 
loss events and recommended protocol adjustments to reduce 
the occurrence of chromosome loss [34]. These improvements 
include activating/stimulating T-cells after delivering genome 
editing components into non-activated T-cells, which helps 
mitigate aneuploidy linked to elevated TP53 expression. This 
effect may be reduced utilizing the HITI method and provides 
further rationale for exploring HITI as a T-cell engineering 
platform. 

To conclude, HITI in non-activated T-cells has its advantages, 
as it can streamline and accelerate the manufacturing process. 
Importantly, editing non-activated T-cells using HITI may also 
enhance the safety profile of the engineered T-cells.
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