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Commentary

Systemic Lupus Erythematosus (SLE) is a complex disease 
marked by extensive immune system dysfunction, culminating 
in a diverse spectrum of clinical phenotypes of varying severity 
[1]. Despite the significant advancements in elucidating the 
pathogenesis of the disease, the management of SLE remains 
largely empirical with attainment of low disease activity 
and remission targets being an infrequent outcome among 

patients [1]. Strikingly, the intricate molecular landscape and 
the notorious heterogeneity of the disease pose substantial 
challenges in the design of successful clinical trials, resulting 
in the scarcity of approved therapeutic modalities, which 
further amplifies the burden on SLE patients. 

The systemic nature of the disease underscores the widely 
distributed immune alterations that drive autoimmunity 
targeting nucleic acids and their associated proteins, 



                                                                                                                                                      
 Garantziotis P, Nikolakis D, Frangou E, Bertsias G, Boumpas DT. Targeting Monocyte Abnormalities in Systemic Lupus 
Erythematosus through Omics-Based Drug Repurposing. J Cell Immunol. 2024;6(3):113-116.

J Cell Immunol. 2024
Volume 6, Issue 3 114

and inciting tissue-damaging inflammation [2]. Evidence 
highlights the essential role of innate immune system in the 
initiation, propagation of autoimmunity and development 
of organ damage in SLE [3] and a plethora of phenotypic 
and functional abnormalities of the macrophage/monocyte 
lineage cells has been reported [4,5]. The impaired phagocytic 
activity of macrophages resulting in the inefficient clearance 
of apoptotic material and immune-complexes is instrumental 
in the breakdown of self-tolerance and the subsequent 
promotion of autoantibody production, a unifying feature of 
SLE [6]. Additionally, in SLE, monocytes are acknowledged as 
significant contributors to the type I interferon production, a 
hallmark of the disease [7]. Monocytes serve as the primary 
source of IFN in the pristane-induced murine lupus model, 
defined by high IFN signature, and human monocyte-derived 
macrophages demonstrate elevated IFN-α and IFN-β gene 
expression when transfected with a small non-coding Y RNA 
or stimulated with immune complexes [7]. The aberrant 
activation of autoreactive B and T cells observed in SLE could 
be partially ascribed to the dysregulated cytokine production 
by monocytes. Monocytes from SLE patients exhibit 
heightened production of B-lymphocyte stimulator (BLyS), 
fostering the survival and proliferation of B cells [8]. Moreover, 
in the peripheral blood of SLE patients, monocytes are major 
producers of IL-10 and IL-6, amplifying antibody production 
and facilitating plasma cell differentiation, respectively [8]. 
Thus, directing therapeutic interventions towards monocytes 
could potentially target fundamental abnormalities in SLE, 
offering significant therapeutic benefits to the patients.

Considering the paucity of approved medications in SLE 
and the high attrition rates, repurposing "old" drugs for the 

disease is increasingly appealing, providing the advantage of 
utilizing de-risked compounds for new indications. Advanced 
computational tools have streamlined both de novo drug 
development and drug repurposing processes, enabling 
the reduction of overall costs and shortening development 
timelines (Table 1). The Connectivity Map (CMap) project 
serves as a pioneering drug repurposing platform, 
incorporating gene expression responses from four human 
cell lines exposed to various doses of a large collection of FDA-
approved compounds [9]. Building upon this groundwork, the 
NIH-supported Library of Integrated Network-Based Cellular 
Signatures (LINCS) expanded the transcriptomic databases 
of the CMap project by integrating gene expression profiles 
from over 60 cell lines before and after exposure to more than 
20,000 perturbagens [10]. Using the Lincscloud, the successor 
to CMap, drug candidates capable of reversing the SLE-related 
transcriptional signatures were determined, highlighting the 
therapeutic potential of phosphoinositide 3-kinase (PI3K) 
and mammalian target of rapamycin (mTOR) inhibitors in 
SLE therapeutics [11]. Utilizing CMap for computational drug 
repurposing analysis and integrating significant gene targets 
derived from transcriptome-wide association studies, several 
clinically relevant drug classes potentially suitable for SLE 
treatment were detected [12]. Among these are glucocorticoid 
receptor agonists, histone deacetylase (HDAC) inhibitors, 
mTOR inhibitors, and topoisomerase inhibitors, all identified 
as promising candidates [12]. In the same context, patient 
stratification based on the drug responsiveness suggested 
that mTOR and TNFa inhibitors could potentially reverse the 
transcriptional signatures of the lymphocyte- and neutrophil-
driven subgroups, respectively [13]. Achieving low disease 
activity state or remission is crucial for SLE patients, offering 

Table 1. Selected studies of computational drug repurposing in SLE.

Study (year of publication) Computational approach Key drug candidates

Toro-Domínguez et al. (2017) [11] Lincscloud PI3K and mTOR inhibitors 

Toro-Domínguez et al. (2019) [13] CLUE mTOR and TNFa inhibitors

Owen et al. (2020) [25] LINCS, STITCH (v.5.0), and IPA African ancestry: bortezomib, PF-06650833, IRAK4-specific 
inhibitor; European ancestry: TYK2 inhibitor

Noor et al. (2021) [26] Semantic Web (SW) technologies
Aspirin, azathioprine, cyclophosphamide, indomethacin, 
methotrexate, leflunomide, warfarin, clopidogrel, 
peginterferon alfa-2a, and peginterferon alfa-2b

Frangou et al. (2022) [16] L1000 Characteristic Direction 
Signature Search Engine (L1000CDS2)

R(+)−6-BROMO-APB, HEMADO, norketamine hydrochloride 
and trichostatin A

Garantziotis et al. (2022) [17] CMap, iLINCS PI3K/mTOR pathway inhibitors, JAK2 inhibitor

Nikolakis et al. (2023) [19] iLINCS, CLUE, L1000CDS2, DGIDb NF-κB inhibitor, Pim-1/NFATc1/NLRP3 pathway inhibitor, 
HSP90 inhibitors

Khunsriraksakul et al. (2023) [12] CMap Glucocorticoid receptor agonist, HDAC inhibitor, mTOR 
inhibitor, and topoisomerase inhibitor

Parodis et al. (2024) [15] Reactome Pathways Bruton tyrosine kinase inhibitors, TLR7 and TLR9 inhibitors 
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significant benefits in terms of minimizing organ damage 
accrual and preventing flares [14]. Interestingly, the drug-
target interaction analysis highlights the modulation of toll-like 
receptor (TLR) cascades, Bruton tyrosine kinase (BTK) activity, 
cytotoxic T lymphocyte antigen 4 (CTLA-4)-related inhibitory 
signaling, and the nucleotide-binding oligomerization 
domain leucine-rich repeat-containing protein 3 (NLRP3) 
inflammasome pathways as promising strategies for attaining 
lupus low disease activity state or remission in SLE [15]. 

Our group has also previously employed computational 
signature mapping, comparing transcriptional profiles of 
drugs against diseases or clinical phenotypes, to identify 
potential novel therapeutic agents in autoimmune diseases 
[16-19]. Applying an unbiased, whole blood transcriptome 
driven molecular taxonomy approach and leveraging two 
robust, high throughput platforms (iLINCS and CLUE), 
we devised a personalized drug repurposing pipeline to 
propose novel compounds capable of counteracting the 
endotype-specific transcriptional abberations observed 
in SLE patients [17]. Notably, agents such as dactolisib 
and fedratinib, targeting the PI3K/mTOR and the JAK/STAT 
pathways respectively, emerged as promising candidates 
to ameliorate the SLE related transcriptional disturbances in 
a personalized manner [17]. In light of the limitations of the 
currently available therapeutic interventions, failing to induce 
remission in over 50% of patients with lupus nephritis (LN), 
we next conducted a comparative cross-tissue and cross-
species gene expression analysis to identify nephritis-specific 
genes for subsequent drug repurposing analysis [16]. Using 
the L1000 Characteristic Direction Signature Search Engine, 
we detected agents predicted to reverse the transcriptional 
signatures associated with active LN and the transition 
from preclinical to overt disease [16]. Among these, R(+)−6-
BROMO-APB was predicted to reverse the former signature, 
while HEMADO, norketamine hydrochloride, and trichostatin 
A were anticipated to counteract the latter signature in the 
HA1E kidney cell line, indicating the potential for further 
evaluation in LN therapeutics [16].

Given the reasonable assumption that drugs reversing the 
transcriptional profile linked to a disease state hold therapeutic 
promise and acknowledging the pivotal involvement of 
macrophage/monocyte lineage cells in SLE pathogenesis, 
the identification of compounds capable of modifying SLE-
specific transcriptional abnormalities in monocytes warrants 
significant consideration. Employing the iLINCS, CLUE, 
and L1000CDS2 platforms, we identified small molecules 
predicted to most effectively counteract the SLE monocyte-
specific gene signature [19]. Compounds disrupting the Pim-
1/NFATc1/NLRP3 signaling axis or inhibiting the heat shock 
protein 90 (HSP90) were forecasted to efficiently mitigate 
the abnormal monocyte signature in SLE, consistent with 
experimental evidence suggesting that inhibition of the Pim-
1/NFATc1/NLRP3 pathway improves nephritis in lupus mouse 

models [20], and HSP90 facilitates TLR7/9-mediated nucleic 
acid recognition in SLE [21]. 

Focusing solely on transcriptome reversal may overlook 
opportunities to modulate key regulatory hub genes 
within the biological system, potentially constraining the 
effectiveness of drug repurposing endeavors. Therefore, 
adopting a holistic approach that integrates information on 
hub genes and their interactions alongside transcriptomic 
data is essential to ensure comprehensive target identification 
and therapeutic efficacy. Applying a network-based drug 
repurposing strategy incorporating upstream regulators 
of the SLE monocyte-signature, the IL-12/IL-23 inhibitor 
ustekinumab was identified as a potential candidate for 
efficiently disrupting the molecular interaction network of 
monocytes. While proteasome inhibitors effectively deplete 
autoreactive plasma cells and demonstrate therapeutic 
efficacy in preclinical mouse models of LN, evidence suggests 
that immunoproteasome inhibition may selectively induce 
apoptosis in CD14+ monocytes, supporting the validity of our 
network-based drug repurposing strategy, which implied the 
therapeutic targeting of SLE monocytes by bortezomib [22].

Despite the significant successes achieved in drug 
repurposing, several limitations must be carefully considered 
[23,24]. While repurposed drugs may bypass phase I clinical 
trials, which primarily focus on safety evaluation, concerns 
regarding drug safety remain a significant challenge. The 
safety profile established for a drug in one patient population 
may not automatically translate to another population, 
prompting a need for the re-evaluation of safety parameters. 
Furthermore, the dosing regimen validated for the original 
indication may not be optimal for new therapeutic uses, 
necessitating adjustments and further investigation. Lack of 
specificity for the new indication poses a substantial hurdle, 
particularly when utilizing SLE blood specimens that do not 
entirely mirror the molecular alterations in target tissues. 
Lastly, intellectual property barriers can impose additional 
limitations on the drug repurposing process.

In conclusion, omics-based drug repurposing emerges 
as a promising alternative to de novo drug development, 
offering the potential to expedite the delivery of compounds 
to patients. Leveraging machine-learning and artificial 
intelligence methodologies to integrate the vast array of 
publicly available SLE omics data holds significant promise for 
advancing drug repurposing efforts in the treatment of SLE.
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