
J Cell Immunol. 2021
Volume 3, Issue 5

Journal of Cellular Immunology                     Commentary

https://www.scientificarchives.com/journal/journal-of-cellular-immunology

326

Using Immune Cell/Adipocyte Co-Culture Models to Identify 
Inflammatory Paracrine Signaling Mechanisms: A Process 
Attenuated by Long-Chain N-3 Polyunsaturated Fatty Acids

Jennifer M. Monk*, Amber L. Hutchinson, Jamie L.A. Martin, Lindsay E. Robinson*

Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1

*Correspondence should be addressed to Jennifer M. Monk; jmonk02@uoguelph.ca, Lindsay E. Robinson; lrobinso@uoguelph.ca

Received date: July 06, 2021, Accepted date: October 12, 2021

 Copyright: © 2021 Monk JM, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author  and source 
are credited.

Introduction

This invited Commentary is on the methods paper entitled 
“Studying adipocyte and immune cell cross talk using 
a co-culture system” in Immunometabolism: Methods 
and Protocols [1]. Co-culturing individual immune cell 
populations (as primary cells or cell lines) with adipocytes 
represents a model system to study the paracrine 
interactions (or cross-talk) between cell types that can 
impact adipose tissue (AT) function. This is particularly 
relevant in obese AT, wherein paracrine interactions 
between cell types promotes the secretion of inflammatory 

mediators that contribute to increased local (i.e. within the 
AT) and systemic low-grade inflammation and metabolic 
dysfunction, including insulin resistance (IR) [2-5]. 

AT is comprised of adipocytes and multiple immune 
cell types within the stromal vascular cellular fraction, as 
reviewed elsewhere [6]. As lean AT converts into obese AT 
during prolonged periods of overnutrition, there is a change 
in both the number and activity of immune cell populations. 
In lean AT, regulatory T cells [Tregs; CD4+, forkhead box 
P3 (FOXP3+)] and M2-polarized macrophages (F4/80+, 
CD11b+, CD11c-) have been shown to contribute to the 
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maintenance of insulin sensitivity, in part, via secretion 
of anti-inflammatory mediators [3,5,7]. Conversely, in 
obese AT, decreases in Treg and M2 cellular abundance 
combined with increased immune cell recruitment and 
infiltration changes the cellular composition of the AT 
stromal vascular fraction and contributes to inflammation 
and metabolic dysfunction of the tissue [8-17]. Specifically, 
the increased abundance of immune cells within obese 
AT includes macrophages exhibiting polarization to the 
inflammatory M1 phenotype (F4/80+, CD11b+, CD11c+) [8-
13], CD4+ T cells [4,9,14,18], CD8+ T cells [4,9,14], natural 
killer (NK) cells [19-21], B cells [22,23] and dendritic cells 
[24,25]. Thus, understanding the influence of the paracrine 
interactions between immune cell populations and 
adipocytes in obese AT that underlie obesity-associated 
inflammation and metabolic dysfunction (both locally and 
systemically) will help elucidate appropriate intervention 
strategies to attenuate inflammatory mediator production 
and improve AT function. 

Our research group [26-32] and others [33-36] have 
demonstrated the anti-inflammatory mechanisms through 
which long-chain (LC) omega-3 (n-3) polyunsaturated 
fatty acids (PUFA), eicosapentaenoic acid (20:5:n-3, EPA) 
and docosahexaenoic acid (22:6n-3, DHA), serve as an 
intervention strategy to improve obesity-associated AT 
inflammation and metabolic dysfunction. As such, high fat 
(HF) diet supplementation with fish oil derived LC n-3 PUFA 
can attenuate the severity of AT and systemic inflammation 
and associated metabolic dysfunction [26], which can be 
attributed, at least in part, to the paracrine interactions (or 
cross-talk) between immune cell subsets and adipocytes, 
as reviewed elsewhere [2]. Since research on adipocyte – 
immune cell cross-talk has centred on macrophages and T 
cell subsets, these immune cell populations are the focus of 
this commentary. We will discuss the development of the 
adipocyte-immune cell co-culture models and highlight 
our research findings demonstrating the ability of n-3 
PUFA to mitigate paracrine signaling between co-cultured 
adipocytes and T cells (CD8+ and CD4+) or macrophages 
with an emphasis on the secretory profile (inflammatory 
and chemotactic mediators), however, it is worth noting 
that we have also shown a beneficial impact of n-3 PUFA 
on the NLRP3 inflammasome and/or macrophage M1/M2 
polarization status in these models [29,31,32,37].

Adipocyte – Immune Cell Co-Culture Models

The adipocyte – immune cell (either macrophages, 
CD8+ or CD4+ T cells) co-culture model we developed 
[27-29,31,32,37-39], utilizes the murine 3T3-L1 pre-
adipocyte cell line, which requires differentiation into 
lipid-laden mature adipocytes prior to co-culture with 
immune cells and provides a standardized component of 
the model between co-culture studies that is combined 

with varying immune cell populations [1]. To recapitulate 
a critical feature of the obese phenotype and provide an 
inflammatory stimulus, co-cultures are stimulated with a 
physiologically relevant dose of lipopolysaccharide (LPS, 
10 ng/mL) derived from Escherichia coli serotype 055:B5, 
which reproduces the level of endotoxin units reported in 
obese humans and rodents (5-6 endotoxin units/mL) [40-
42], that is not utilized in other adipocyte-immune cell 
co-culture models [43-47]. Moreover, we have conducted 
studies involving the pre-stimulation of adipocytes with 
LPS for 24 hr to recapitulate already inflamed AT prior 
to co-culture with either macrophages [27,28] or CD8+ T 
cells [31], as this would be the AT microenvironment that 
newly infiltrating immune cells would encounter in vivo 
[2,9]. Our initial co-culture work utilized the RAW264.7 
macrophage cell line [38], which is commonly employed 
by other groups in adipocyte co-cultures treated with 
dietary bioactives [43-47]. More recently, we have utilized 
mouse primary splenic CD11b+ macrophages in co-culture 
with 3T3-L1 mature adipocytes [28], which increases 
the translational potential of this model compared to 
studies using primary splenocytes (comprised of multiple 
undefined cell types) [48], or immortalized cell lines (e.g. 
RAW264.7 macrophages) [43-47]. In this connection, our 
co-culture work with CD8+ and CD4+ T cells has exclusively 
utilized primary cells purified from the spleen of both lean 
and obese mice [29,31,32,37,39].

To further increase the translational relevance of the co-
culture model, we have utilized a physiologically relevant 
cellular ratio of the immune cell population co-cultured 
with adipocytes to recapitulate their abundance within 
obese AT, which is in contrast to co-culture models utilizing 
equal numbers of adipocytes and macrophages (1:1 cellular 
ratio) [43-47]. In our model, macrophages are co-cultured 
with adipocytes at 17% of cells in culture [28,38], which is 
reflective of the level of macrophage cellular infiltration in 
epididymal AT of db/db mice and recapitulates the in vivo 
cellular ratio of macrophages:adipocytes [49]. Similarly, 
T cells are co-cultured with adipocytes to recapitulate the 
murine obese AT cellular ratio of adipocytes to T cells [9], 
with co-cultures comprised of 10% CD8+ T cells [31,37,39] 
and 5% CD4+ T cells [29,32].

Our research group has shown that cellular co-cultures 
can be established for 12 hr [38], 24 hr [28,31,32,37,39] or 
48 hr [29] and can be utilized to discern the difference in 
outcomes resultant from i) direct cell contact (i.e., contact-
dependent, Figure 1A and 1B), a combined outcome 
of both physical cellular interactions and paracrine 
signaling mechanisms, and ii) trans-well in direct cell 
contact (i.e., contact-independent, Figure 1C), wherein 
cells are separated by a semi-permeable 0.4 μM polyester 
membrane trans-well insert that precludes physical 
contact between cell types but permits the movement of 
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soluble mediators across the trans-well insert and the 
discernment of paracrine signaling effects [1]. To highlight 
a variation of the adipocyte/immune cell co-culture 
models, our research group has also utilized conditioned 
media (contact-independent) generated from i) one 

cultured cell line to another (Figure 2A), ii) adipocyte/CD8+ 
T cell co-culture conditioned media added to RAW264.7 
macrophage cultures (Figure 2B) [31,37,39], and iii) intact 
primary AT conditioned media added to adipocyte/CD4+ 
T cell co-cultures [32] or macrophages [27] (Figure 2C).

Cell line

e.g., 3T3-L1 adipocytes

Co-culture in direct physical contact

C) Cell Contact-Independent Model (cells separated by trans-well insert)

Immune cell
(cell line or primary)

Cell line
(e.g., 3T3-L1 adipocytes)

Trans-well 
Co-culture separated by a trans-well insert

or

Cell line

MouseCell line

A) Cell Contact-Dependent Model (cell lines only)

Primary immune cell
(e.g., CD11b+ cells)

Cell line
(e.g., 3T3-L1 adipocytes)

Co-culture in direct physical contact

Cell line

Mouse

B) Cell Contact-Dependent Model (cell line with primary immune cells)

e.g., RAW264.7 macrophage

Figure 1: Diagram of cell contact-dependent versus cell contact-independent co-culture models. (A) two cell lines grown and grown 
separately, then combined in co-culture in direct physical contact, (B) isolated primary immune cells from rodents co-cultured in 
direct physical cell contact with a cell line (e.g. 3T3-L1 adipocytes), and (C) cell contact-independent model wherein any combination 
of either cell lines or primary purified cells are co-cultured separated by a semi-permeable trans-well insert to prevent cell contact 
but permit soluble mediators to pass across the trans-well.
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CD8+ T cell and Adipocyte Co-Culture 

CD8+ T cells have been shown to accumulate in obese 
AT prior to the accumulation of macrophages [9,50,51] 
and co-localize to crown-like structures in the AT [9]. In 
vivo depletion of CD8+ T cells via neutralizing antibody 
injections reduces the expression of macrophage 
chemotactic signals in AT and cellular trafficking, thereby 
reducing the magnitude of inflammation and systemic IR 
[9]. Similarly, the severity of the obese phenotype in CD8a-

/- mice is attenuated but can be reversed through adoptive 
transfer of CD8+ T cells resulting in inflammatory mediator 
production and IR [9], thus, demonstrating the essential 
role of this cell type in the development and maintenance 
of obesity-associated AT dysfunction. 

To highlight the utility of our co-culture models to study 
the paracrine signaling between adipocytes and immune 
cells, our initial contact-dependent co-culture studies used 
3T3-L1 mature adipocytes cultured with purified splenic 
CD8+ T cells isolated from lean mice fed either a fish oil 
[37] or flaxseed oil [39] supplemented diet as the source 
of either marine- or plant-derived n-3 PUFA, respectively. 
Despite the difference in marine versus plant sources 
of n-3 PUFA that enriched the CD8+ T cells, in contact-

dependent co-culture with adipocytes stimulated with 
LPS, the resultant anti-inflammatory and anti-chemotactic 
effect was consistent and characterized by reduced TNFα, 
IL-6, MCP-1, MCP-3 and MIP-1β secreted protein into the 
culture media compared to control [37,39]. Subsequently, 
the CD8+ T cell/adipocyte co-culture conditioned media 
was used in a follow-up experiment with RAW264.7 
macrophages in a chemotaxis assay to demonstrate 
that the number of macrophages migrating towards the 
chemotactic signals in the conditioned media was reduced 
compared to control [37,39], indicating a functional 
outcome of reduced macrophage trafficking as a result of 
n-3 PUFA attenuating the paracrine interactions between 
CD8+ T cells and adipocytes. The anti-inflammatory and 
anti-macrophage chemotactic secretory profile of n-3 
PUFA-enriched CD8+ T cells/adipocyte co-cultures was 
later confirmed in both the cell-contact dependent and 
cell contact-independent (trans-well) co-culture models, 
which was mechanistically attributed, in part, to the effects 
of TNFα [31]. The anti-inflammatory and anti-chemotactic 
secretory profile in n-3 PUFA co-cultures could be 
reproduced in control n-6 PUFA-enriched CD8+ T cell/
adipocytes co-cultures treated with a TNFα neutralizing 
antibody [31].

C)

A) Cell Contact-Independent Model 
(cells cultured with conditioned media derived from another cell type)

e.g., RAW 264.7 macrophages e.g., 3T3-L1 adipocytes

Conditioned media

B)

e.g., CD8+ T cell/adipocyte 
direct contact co-culture 

e.g., RAW 264.7 macrophages

Conditioned media

Cell Contact-Independent Model 
(cells cultured with conditioned media derived from a co-culture)

Conditioned Media Cell Contact-Independent Model (cells cultured with conditioned media derived from organ culture) 

Adipose tissue Digested adipose tissueMouse

Adipose tissue conditioned media

e.g., RAW264.7 macrophages

Figure 2. Diagram of contact-independent culture models using conditioned media derived from (A) immune cells (cell line or 
primary cell) used to stimulate another cell type (e.g. 3T3-L1 adipocytes), (B) adipocyte/immune cell co-cultures used to stimulate 
another cell type (e.g. RAW264.7 macrophages) or (C) primary tissue (e.g. whole adipose tissue) used to treat another cell type (e.g. 
immune cell population such as a cell line (RAW264.7 macrophages) or primary immune cells). 
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CD4+ T cell and Adipocyte Co-Culture 

CD4+ T cells subsets have been shown to change in 
obese AT prior to the infiltration and accumulation of 
macrophages [14], wherein IFNγ-secreting Th1 cells have 
been shown to promote macrophage M1 polarization and 
contribute to AT metabolic dysfunction [14,18,50,52]. 
Additionally, IL-17-secreting Th17 cells have also been 
shown to contribute to obese AT inflammation [53].

In our co-culture model (using a physiologically relevant 
cellular ratio and LPS concentration) adipocytes were 
co-cultured in direct cell contact with primary splenic-
derived purified CD4+ T cells from lean mice fed isocaloric 
diets enriched with either n-3 or n-6 PUFA. Using this 
approach, n-3 PUFA increased mRNA expression and/
or secreted protein of Th2 polarization markers (GATA3, 
IL-4) and reduced expression of Th1 polarization markers 
(Tbet, IFNγ), in addition to reducing the secretion of other 
inflammatory and macrophage chemotactic mediators 
(IL-1β, IL-6, MCP-1, MCP-3 and MIP-1α) [32]. These 
effects were reproduced in contact-dependent co-cultures 
containing adipocytes and splenic CD4+ T cells from HF 
diet-induced obese mice consuming either an n-3 or n-6 
PUFA-supplemented isocaloric diet (containing equal 
amounts of lard/saturated fatty acids) [29]. Collectively, 
our findings demonstrate the ability of adipocyte/CD4+ 
T cell cross-talk to influence the local inflammatory 
and chemotactic microenvironment, which can impact 
subsequent macrophage chemotaxis and ultimately 
contribute to AT metabolic dysfunction. Future studies 
utilizing contact-independent conditioned media and 
the trans-well (cell contact-independent) models can 
help discern the inflammatory and chemotactic mediator 
cellular source to mechanistically identify the contribution 
of each cell type in co-culture to help direct targeted 
interventions to improve AT function.

Macrophages and Adipocyte Co-Culture 

As obesity progresses, the infiltration of macrophages 
into the AT increases from 3% to approximately 20% of 
total non-adipocyte cells [54], wherein they exhibit an 
inflammatory M1 phenotype and increase inflammatory 
mediator production contributing substantially to obesity-
associated inflammation and IR [2,9,12,14,55]. We 
[28,38] and others [43-47] have used 3T3-L1 adipocyte 
and RAW264.7 macrophage co-culture models [i.e., in 
cell contact-dependent and cell contact-independent 
(trans-well)] to study the paracrine signaling mechanisms 
that underlie AT dysfunction using different dietary 
bioactive interventions. Our initial co-culture work 
utilizing cell lines (3T3-L1 adipocytes and RAW264.7 
macrophages) demonstrated that n-3 PUFA (EPA and 
DHA) could attenuate the intensity of the inflammatory 

cross-talk between cell types (e.g. reduced secretion of 
IL-6 and MCP-1) in both the cell contact-dependent and 
cell contact-independent (i.e., trans-well) co-culture 
models, which was associated with increased expression 
of non-inflammatory M2 macrophage markers [38]. 
Co-culture of 3T3-L1 adipocytes with primary splenic 
CD11b+ macrophages from obese mice consuming a HF 
diet supplemented with or without n-3 PUFA confirmed 
the attenuated inflammatory mediator secretory profile 
and reduced expression of M1 macrophage markers 
in n-3 PUFA cultures [28]. This outcome was partially 
attributable to the effects of adiponectin [28], wherein n-3 
PUFA have been shown to stimulate adiponectin secretion 
from adipocytes [56]. Finally, using a conditioned 
media contact-independent model in which RAW264.7 
macrophage cultures were treated with conditioned media 
derived from intact primary AT from n-3 PUFA-fed mice, 
we demonstrated that macrophage-derived inflammatory 
and chemotactic mediator secretion (IL-6, MCP-1, MCP-
3 and RANTES) and M1 macrophage markers were 
reduced, again in part, through an adiponectin-dependent 
mechanism [27].

Skeletal Muscle and Macrophage Co-
Culture

Moving beyond co-culture studies focused on AT in 
obesity is relevant given that other tissues also contribute 
to systemic inflammation and whole-body IR in obesity, 
in part, through inflammatory immune cell-tissue cross-
talk, thereby, providing other targets for the systemic 
impacts of n-3 PUFA on the obese phenotype [26]. 
Skeletal muscle is the primary site for insulin-simulated 
glucose uptake; however, in obesity, increased circulating 
free fatty acids and inflammatory cytokines interfere 
with insulin signaling in skeletal muscle to promote 
development of whole-body IR [57-59]. Similar to AT, 
obese skeletal muscle is characterized by the infiltration 
and accumulation of immune cells, particularly M1 
macrophages, which contribute to local inflammation 
and IR through immune cell-myocyte cross-talk [60-63]. 
Therefore, our research group [64-66] and others [67-69], 
have utilized a contact-independent conditioned media co-
culture model to examine the inflammatory macrophage-
myocyte cross-talk that contributes to obese metabolic 
dysfunction. Importantly, attenuating macrophage-muscle 
inflammatory cross-talk represents another potential 
target for n-3 PUFA to improve obesity-associated insulin 
sensitivity. In this connection, RAW264.7 macrophages 
were stimulated with fatty acids [DHA (n-3 PUFA) 
versus palmitic acid (saturated fatty acid control)] and 
a physiologically relevant LPS dose (described above) to 
generate macrophage conditioned media (MCM), which 
contained secreted cytokines and chemokines that could 
impact muscle cell function in a cell contact-independent 
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manner. When MCM was collected and transferred to 
cultures of differentiated L6 myotubes we demonstrated 
that DHA-derived MCM improved insulin stimulated 
L6 myotube function by increasing the phosphorylation 
status of mediators in the insulin signaling cascade and 
subsequent glucose uptake [64]. A later co-culture study 
using MCM generated from RAW264.7 macrophages 
and L6 myotubes demonstrated that n-3 PUFA-mediated 
attenuation of inflammatory macrophage-myocyte cross-
talk is attributable, in part, to a PPAR-γ-dependent 
mechanism [65]. 

Most recently, to increase the translational relevance 
of the macrophage-myocyte co-culture model to 
recapitulate more accurately the obese skeletal muscle 
microenvironment, rats were fed a HF diet enriched with 
either n-3 or n-6 PUFA and primary purified splenic 
CD11b+ macrophages were isolated and co-cultured in 
direct contact with L6 myotubes stimulated with LPS, 
wherein n-6 PUFA increased inflammatory cytokine 
production compared to n-3 PUFA co-cultures [66]. 
Subsequently, in a contact-independent experiment to 
determine the response of macrophages to mediators 
secreted from myocytes, purified CD11b+ cells from obese 
rats (consuming n-3 PUFA and n-6 PUFA-enriched HF 
diets) were cultured alone in conditioned media collected 
from LPS-stimulated L6 myocytes. This resulted in n-3 
PUFA-enriched macrophages reducing expression of 
inflammatory cytokines and M1 polarization markers 
compared to n-6 PUFA [66]. Collectively, skeletal muscle 
cell (myotube)/macrophage co-culture models represent 
a relevant future direction to elucidate the underlying 
mechanisms contributing to obesity-associated IR. 

Conclusion

Through the use of appropriately crafted adipocyte/
immune cell (CD8+ and CD4+ T cell, macrophage) co-
culture models [1], the critical features of obese AT can be 
recapitulated by including physiologically relevant cellular 
ratios of adipocytes to immune cell populations [9,49] and 
LPS stimulation conditions [40-42]. Using this approach, 
we have shown that n-3 PUFA can attenuate the severity of 
the inflammatory and chemotactic paracrine interactions 
between adipocytes and macrophages [27,28], CD8+ T 
cells [31,37,39] and CD4+ T cells [29,32], which collectively 
contribute to obese AT dysfunction [2]. Moreover, we 
have expanded this co-culture model to study paracrine 
interactions in another metabolically active tissue, namely 
skeletal muscle/immune cell cross-talk [64-66] to better 
understand the contribution of immune cells in various 
tissues towards the severity of the obese phenotype and 
identify immune-centric intervention strategies to improve 
obesity-associated metabolic dysfunction.
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