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Introduction

TTK, also known as MPS1 (the monopolar spindle 1)/
MPS1L1, is located on chromosome 6q13-q21 and encodes 
a dual-specific protein kinase that phosphorylates serine 
and threonine [1]. The spindle assembly checkpoint 
(SAC) plays a key role in mitosis. The SAC acts as a 
molecular monitoring mechanism, which delays mitosis 
until all chromosomes are properly attached to the 
spindle microtubules. As a key regulator of the SAC, 
TTK plays an important role in controlling cell cycle 
progression and maintaining genomic integrity [2]. TTK 
is vital for the recruitment of kinetochore components to 
unattached kinetochores and is essential for correcting 
improperly attached chromosomes. Interestingly, TTK is 
highly expressed in many types of malignant tumors [3]. 

However, TTK expression is low in most organs, except 
in the testis and placenta. Once TTK is inhibited, cancer 
cells exit mitosis prematurely, with more chromosome 
segregation errors and aneuploids. After several rounds of 
cell division, the accumulation of chromosome segregation 
errors may lead to cancer cell death [4]. Therefore, TTK has 
gradually become a research hotspot for anticancer drugs, 
and TTK inhibitors are increasingly being investigated in 
clinical trials. 

The combination of TTK inhibitors and radiation therapy 
can increase mitotic errors, promote aneuploidy formation, 
inhibit DNA damage repair, and ultimately lead to mitotic 
catastrophe and necrosis [5]. Studies have also shown that 
the combination of TTK inhibitors and radiotherapy can 
improve the efficacy in breast cancer, liver cancer, and 
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brain glioma treatment [6-8]. Therefore, it is necessary 
to further study the molecular mechanism of combining 
radiation therapy and TTK inhibitors in various tumors to 
develop better strategies for treatment.

The Role of TTK in Mitosis

Cell mitosis is a basic activity that maintains the 
normal function of organs and tissues. The SAC is a key 
surveillance and correction system for mitosis. The SAC 
is activated when chromosomes are not properly captured 
by the spindle [9]. TTK is the key regulator of SAC function 
and plays an important role in the mitotic process. Once 
activated in early mitosis, TTK localizes to kinetochores 
and phosphorylates multiple residues on SAC proteins, 
thus activating SAC function. Simultaneously, TTK 
promotes error correction by phosphorylating several 
substrates [10,11]. When the SAC signal is activated, a 
mitotic checkpoint complex (MCC) is formed [12]. TTK 
also plays a key role in the assembly of the interphase 
MCC [13]. Subsequently, the anaphase-promoting 
complex (APC/C) function is inhibited by the MCC, and the 
initiation of anaphase mitosis is delayed [12,14-19]. When 
all chromosomes are correctly aligned, TTK is separated 
from the kinetochores, and the SAC function is turned off. 
Then, the MCC is dissociated, and the APC/C is activated, 
which initiates anaphase of mitosis [20-28].

TTK is a Promising Target in Malignant 
Tumors

TTK is highly expressed in many types of malignant 
tumors. However, TTK expression is low in most organs, 
except in the testis and placenta [3]. In addition, high 
expression of TTK has been found to be associated 
with poor prognosis in various malignant tumors. 
Therefore, TTK is potentially specific antitumor target. 
Preclinical studies have shown that TTK inhibitors or 
TTK knockdown-induced mitotic aberrancies inhibit the 
growth of malignant tumor cells [29-31]. Moreover, TTK 
inhibition combined with chemotherapy has a synergistic 
effect in some malignant tumors [32-34]. Because of the 
difference in expression between malignant tumors and 
normal tissues, the combination of TTK inhibitors and 
paclitaxel increased the efficacy without increasing the 
adverse reactions in animal models [35].

Glioma

TTK is significantly elevated in gliomas. Overexpression 
of TTK was positively associated with tumor grade and 
negatively associated with survival in patients with glioma 
[32,36]. TTK knockdown resulted in mitotic aberrancies 
and inhibited the proliferation of glioblastoma cells. 
MPS1-IN-3, a selective inhibitor of TTK, caused gross 
chromosome segregation defects in glioblastoma cells. In 

addition, inhibition of TTK with MPS1-IN-3 increased the 
sensitivity of glioblastoma cells to vincristine both in vitro 
and in vivo. Moreover, the combination of MPS1-IN-3 
with vincristine did not increase toxicity in animal models.

Breast cancer

Daniel et al. found that the expression levels of TTK 
mRNA and protein were elevated and correlated positively 
with aneuploidy and basal-like phenotype in breast 
cancer. Expression levels of TTK were positively correlated 
with tumor grade, p53 mutation, and poor survival. 
TTK knockdown caused aberrant mitosis and induced 
apoptosis both in vitro and in vivo. TTK inhibition tends 
to selectively kill cancer cells with high aneuploidy. Maire 
et al. reported that TTK was overexpressed in breast cancer 
patients, regardless of the histological type. However, the 
expression level of TTK was higher in triple-negative breast 
cancer, whereas TTK was not detected in healthy breast 
tissues. TTK knockdown induced mitotic catastrophe and 
apoptosis in triple-negative breast cancer cells. NTRC 
0066-0, a selective TTK inhibitor, was developed by Maia 
et al. NTRC 0066-0 was found to inhibit tumor growth 
both in vitro and in vivo. Furthermore, simultaneous 
administration of NTRC 0066-0 with docetaxel extended 
survival and tumor remission without toxicity in a triple-
negative breast cancer mouse model [33,37-39].

Hepatocellular carcinoma

Chemotherapy is usually ineffective in patients with 
advanced liver cancer with limited life expectancy. 
Sorafenib is often prescribed, and drug resistance 
soon emerges. Our previous study showed that TTK is 
significantly overexpressed in hepatocellular carcinoma 
tissues. TTK overexpression promotes hepatocellular 
carcinoma cell proliferation and resistance to sorafenib 
in vitro and in vivo. In contrast, TTK knockdown inhibits 
cell growth and reduces resistance to sorafenib in 
hepatocellular carcinoma (HCC) cells [40]. Multi-omics 
analysis showed that TTK mRNA levels were negatively 
correlated with relapse-free survival (RFS) and overall 
survival (OS) in patients with HCC after surgery.  This 
indicates its potential as a prognostic biomarker [41]. It has 
been reported that TTK is overexpressed in 77.63% of HCC 
specimens, and the increased TTK expression is closely 
associated with tumor size and the presence of portal vein 
tumor thrombus.  Demethylation of the TTK promoter 
can increase its expression in HCC. In vitro studies have 
shown that TTK can induce cell proliferation, colony 
formation and migration of HCC cells, thereby increasing 
the degree of malignancy of the tumor.  Further studies 
have shown that TTK activates the Akt/mTOR pathway 
through p53. TTK inhibitors can inhibit the growth of HCC 
cells [42]. Therefore, TTK has potential therapeutic value 
for HCC, which encouraged us to conduct further clinical 
studies on TTK inhibitors in the treatment of HCC.
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Pancreatic cancer

TTK is associated with poor survival of pancreatic 
ductal adenocarcinoma (PDAC) cells.  Compared with 
normal pancreatic cells, PDAC is more sensitive to TTK 
inhibition [30]. Kaistha et al. found that TTK expression 
is significantly elevated in PDAC. TTK plays an important 
role in the growth and proliferation of PDAC cells. Loss of 
TTK activity can induce cell death through chromosome 
segregation errors.  In contrast, immortalized normal 
pancreatic hTERT-HPNE cell lines were unaffected by 
TTK activity [40].

Prostate cancer

TTK inhibition has been reported to be significantly 
associated with the recurrence of prostate cancer, and 
in androgen receptor-positive prostate cancer cells, 
TTK inhibition enhances the antiproliferative effects of 
antiandrogens [43,44]. Therefore, TTK has potential 
clinical value in the treatment of prostate cancer.

Melanoma

Liu et al. found that in melanoma, activated B-Raf 
(V600E) prevented TTK degradation and increased 
the amount of TTK protein, which led to centrosome 
amplification and incorrect chromosomal segregation 
[45]. B-Raf/MEK/ERK signaling and Mps1/Akt constitute 
an automatically regulated negative feedback loop in 
melanoma cells. Oncogenic B-RAF (V600E) can eliminate 
the negative feedback loop and cause TTK dysfunction to 
induce chromosome instability and tumorigenesis [46]. 
Therefore, it has been suggested that combined targeted 
therapy of B-RAF and TTK should be applied in clinical 
practice.

Lung cancer

Suda et al. established a strong cytotoxic T lymphocytes 
(CTL) clone stimulated by TTK-567 with specific killing 
activity against HLA-A24-positive lung cancer and 
esophageal cancer cells [47]. This feature illustrates the 
potential of TTK as a cancer vaccine. TTK peptide vaccine 
has also been shown to be safe and well-tolerated in late-

stage clinical trials in patients with advanced or recurrent 
non-small cell lung cancer (NSCLC) [48].

Esophageal cancer

Mizukami et al. found that in patients with esophageal 
squamous cell carcinoma (ESCC), TTK antigen can induce 
a specific T cell response [49]. In clinical trials, the efficacy 
and safety of the TTK vaccine for advanced esophageal 
cancer have been confirmed [50]. This will encourage us to 
further study the use of a TTK tumor vaccine in advanced 
ESCC.

Biliary tract cancer

In clinical trials, the TTK peptide vaccine induced specific 
T cell immune responses in patients with advanced biliary 
tract cancer (BTC) and achieved good efficacy.  This will 
lead us to regard TTK vaccination therapy as one of the 
few treatment options for advanced BTC [51].

TTK Inhibitors

Researchers have used small molecule compounds to 
block the function of the SAC by inhibiting TTK activity, 
resulting in the disruption of mitotic stability. This feature 
can be exploited to develop cancer treatment strategies. 
To date, several types of small-molecule compounds that 
inhibit TTK activity have been identified or developed. 
These small molecule compounds can be divided into four 
broad groups, including N-phenylpyrimidin-2-amine, 
N-phenylpyridine, heterocyclic small compounds in 
3-phenylindazole, and 5-membered bridged six-membered 
bridged [52] (Table 1). Based on the mechanism of action 
of TTK inhibitors, researchers used TTK inhibitors in 
combination with microtubule-targeting agents (MTAs) 
to increase chromosomal separation errors and kill cancer 
cells more efficiently. Some studies have shown that TTK 
inhibitors combined with chemotherapeutic agents can 
effectively increase the killing effect of tumor cells. Wu et al. 
found that CC-671 (a highly selective inhibitor of TTK and 
CLK2) could inhibit the drug efflux activity of ABCG2 in 
lung cancer cells, thus increasing the level of intracellular 
chemotherapy drugs. This will help improve the efficacy of 
chemotherapy in lung cancer [34]. Tannous et al. developed 

Table 1: TTK Inhibitors Classified by Chemical Structure.

Chemical structure Drug name

1. Compounds with N-phenylpyrimidin-2-amine scaffolds Reversine, MPI-0479605, Mps1-IN-3, AZ 3146, CC-671, BOS-
172722, Mps1-IN-2, NTRC 0066-0, NMS-P715 et al.

2. Compounds with N-phenylpyridine scaffolds TC Mps112, Mps1-IN-1, CCT251455 et al.

3. Compounds with 3-phenylindazole scaffold SP600125, CFI-400936, CFI-401870 et al. 

4. Compounds with five-membered bridged six-membered 
heterocyclic scaffolds

Mps-BAY1, Mps-BAY2a, Mps-BAY2b, BAY 1161909, BAY 
1217389, CFI-402257, PF-7006, PF-3837 et al.
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a selective small molecule inhibitor of TTK, Mps1-IN-3, 
which caused mitotic abnormalities in glioblastoma 
cells, and the combination of Mps1-IN-3 and vincristine 
increased aneuploidy and cell death. In addition, Mps1-
IN-3 increases the susceptibility of glioblastoma cells to 
mitotic drugs [32]. Similarly, inhibition of TTK enhanced 
the efficacy of docetaxel in a triple-negative breast cancer 
model [33]. 

TTK Inhibitors in Clinical Trials

There are currently five small-molecule TTK inhibitors 
in clinical trials, namely BAY-1217389 [35,53,54], BAY-
1161909 [35,53,54], BOS-172722 [55,56], CFI-402257 
[2,57-60], and S-81694 (Table 2). Among them, BAY-
1217389, BOS-172722, and S-81694 completed phase I 
or II trials. The CFI-402257-related clinical trial is still 
in its recruitment phase. However, clinical trials on BAY-
1161909 have been terminated. All five inhibitors were used 
in combination with paclitaxel, because the combination 
not only increased the sensitivity of cancer cells, but also 
reduced side effects by reducing the dose of the drug. It is 
worth noting that determining the tolerance and toxicity 

due to long-term use of TTK inhibitors requires further 
study [61,62].  When cancer cells are resistant to one 
TTK inhibitor, they can be combined with several other 
sensitive TTK inhibitors to solve the problem of resistance. 
TTK inhibitors have unique advantages for tumor therapy. 
TTK inhibitors can target excessive TTK in tumors with 
little effect on normal cells, and can improve the sensitivity 
of cancer cells to paclitaxel and other chemotherapy drugs. 
Therefore, TTK inhibitors can be used in combination 
with existing anti-tumor drugs or treatment regimens 
to enhance tumor killing and improve survival in cancer 
patients.

Inhibition of TTK Improve Radiosensitivity 
in Malignant Tumors

Radiotherapy is an important treatment method for 
malignant tumors. Both TTK and radiotherapy affect 
mitosis and DNA damage repair, and the combination of 
TTK inhibition and radiotherapy may have a synergistic 
effect. Some preclinical studies have investigated such 
effects and their mechanisms in malignant tumor models 
(Table 3).

Table 2: TTK Inhibitors in Clinical Trials.

Drug name Study Title Disease Intervention Phase NCT Identifier

BAY-1217389 
(Completed)

Phase I Study of Oral  BAY- 
1217389  in Combination With 
Intravenous Paclitaxel

Advanced malignancies 
(solid tumors)

BAY-1217389 + 
paclitaxel I NCT02366949 

BAY-1161909 
(Terminated)

Phase I Dose Escalation of 
Oral  BAY-1161909  in Combination 
With Intravenous Paclitaxel

Advanced malignancies 
(solid tumors)

BAY-1161909 + 
paclitaxel I NCT02138812 

BOS-172722 
(Completed)

Study of Paclitaxel in Combination 
With  BOS-172722  in Patients 
With Advanced Nonhaematologic 
Malignancies

Advanced 
Nonhaematologic 
Malignancies (ANM) 

BOS-172722 + 
paclitaxel I NCT03328494

CFI-402257 
(Recruiting)

A Study of Investigational 
Drug  CFI-402257  in Patients With 
Advanced Solid Tumors

Advanced Solid Cancers 
(ASC), Breast Cancer

CFI-402257 + 
Fulvestrant I NCT02792465 

CFI-402257 in Combination 
With Paclitaxel in Patients With 
Advanced/Metastatic HER2-
Negative Breast Cancer

Breast Cancer CFI-402257 + 
paclitaxel II NCT03568422

S-81694 
(Completed)

S-81694  Plus Paclitaxel in 
Metastatic Breast Cancer

Metastatic Breast Cancer 
(mBC) 

S-81694 + 
paclitaxel I

NCT03411161Metastatic Triple 
Negative Breast Cancer 
(mTNBC) 

S-81694 + 
paclitaxel II 

https://www.clinicaltrials.gov/
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Gliomas are most widely reported in this field. Maachani 
et al. found that a TTK inhibitor, NMS-P715, increased the 
radiosensitivity of glioblastoma (GBM) cells by reducing 
DNA double-strand break repair and inducing mitotic 
catastrophe after radiation. The involved mechanisms 
included both homologous recombination and non-
homologous end-joining pathways in that study [7]. 
Further studies showed that TTK inhibition regulates 
the tumor suppressors PDCD4 and MSH2 through miR-
21. MiR-21 has been shown to be elevated after radiation 
and mediates the radiation resistance of glioblastoma 
cells by regulating PDCD4 and MSH2 [63]. Another study 
found that hepatic leukemic factor (HLF) can inhibit the 
expression of TTK through miR-132, thereby inhibiting 
the proliferation, metastasis, and radiation resistance in 
GBM cells [64].

The combination of TTK and radiotherapy has also 
attracted attention in other cancers. Our recent study 
showed that the inhibition of TTK blocked G2/M transition 
in the cell cycle by upregulating p21 and enhancing 
radiosensitivity in liver cancer cells [8]. We also found 
that the combination of TTK inhibition and radiotherapy 
enhanced mitotic catastrophe and DNA damage. This 
opens up a new field for the treatment of liver cancer. 
Interestingly, low-dose (non-cytotoxic) TTK inhibitors 
showed radiosensitization in this study. The combination 
of low-dose TTK inhibitors and radiotherapy is expected 
to improve tumor control without increasing adverse 
reactions, which warrants further study. In addition, TTK 
may be responsible for radiation resistance in patients 
with basal breast cancer. Chandler et al. found that 
radiosensitivity was enhanced by the inhibition of TTK 
both in vitro and in vivo in basal-like breast cancer cells. 
TTK inhibition leads to unrepaired double-stranded DNA 
damage by reducing the repair efficiency of the homologous 
recombination system. However, nonhomologous end-
joining was not considered in this study [6,65].

Conclusions

TTK is the key regulator of the SAC, which regulates mitosis 
and ensures the accurate separation of chromosomes. 
TTK is highly expressed in various malignant tumors, 
while its expression is low in most normal organs. 
TTK is positively associated with grade and associated 
negatively with survival in various malignant tumors. 
Preclinical studies show that TTK inhibition induces 
mitotic aberrancies and high aneuploidy and inhibits 
the growth of malignant tumor cells. The combination 
of TTK inhibitors and chemotherapy increases efficacy 
without increasing adverse reactions in animal models. 
The addition of TTK inhibition also enhanced the effects 
of radiotherapy. The combination of TTK inhibition and 
radiotherapy results in more DNA double-strand damage 
and mitotic catastrophe. Involved mechanisms may 
include homologous recombination, non-homologous end 
joining pathways, or both. The mechanism of combination 
therapy has not yet been clarified. Several types of small-
molecule TTK inhibitors have been developed. Five small-
molecule TTK inhibitors have been tested in clinical trials. 
All five inhibitors were used in combination with paclitaxel 
because the combination may not only enhance the killing 
of cancer cells, but also alleviate side effects by reducing 
the dose of paclitaxel (Figure 1). Because of its high specific 
expression in malignant tumors, TTK is expected to be 
developed as an effective anti-tumor vaccine. The efficacy 
and safety of the TTK vaccine have been tested in advanced 
esophageal, biliary tract, and lung cancer. In conclusion, 
targeting TTK has broad prospects, not only is the TTK 
inhibitor expected to be combined with radiotherapy 
and chemotherapy safely to further improve the curative 
effect, but the TTK vaccine is expected to be effective in the 
treatment of malignant tumors. However, the biomarkers 
for predicting the efficacy of TTK inhibitors are still lacking, 
the specific molecular mechanism of TTK inhibitors needs 
to be further studied, and the drug resistance mechanism 

Table 3: The mechanism of combination of TTK inhibition and radiotherapy.

Breast Cancer [6,65] Impair DNA damage repair
Enhance mitotic catastrophe
Impair homologous recombination

Glioblastoma [7,63,64]

Impair DNA damage repair
Enhance mitotic catastrophe
Impair homologous recombination and non-homologous end joining

Induces tumor suppressor PDCD4 and MSH2 through miR-21 

HLF/miR-132/TTK axis regulates radiosensitivity of glioma cells

Liver Cancer [8] Impair DNA damage repair
Enhance mitotic catastrophe
Up-regulating p21 and increasing G2/M blocking
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of TTK inhibitors is not well understood. The sequence 
of radiotherapy and chemotherapy combined with TTK 
inhibitors and the adjustment of dose also need to be 
further studied.
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