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SHP2 Structure and Role in Human 
Diseases

The SHP2 phosphatase consists of one protein tyrosine 
phosphatase catalytic domain (PTP domain), two tandem 
Src homology 2 (SH2) domains (N-SH2 and C-SH2), 
and a C-terminal tail with two tyrosine phosphorylation 
sites (Tyr542 and Tyr580) [1] (Figure 1A). SHP2 activity 
is normally auto-inhibited by the binding of the N-SH2 
domain with the PTP domain [2]. Upon stimulation of 
growth factors or cytokines, the N-SH2 domain binds 
to specific phospho-tyrosine residues and induces a 
conformational change that leads to exposure of the PTP 
domain and an increase in the catalytic activity [3] (Figure 
1B). Phosphorylated Tyr542 interacts intramolecularly 
with the N-SH2 domain to relieve steady-state inhibition 
of the phosphatase, whereas phosphorylated Tyr580 

stimulates the phosphatase activity by interaction with the 
C-SH2 domain [4]. 

Germline gain of function (GOF) mutations in PTPN11 
occur in about 50% of patients with Noonan syndrome 
[5], which is characterized by abnormal facial features, 
skeletal malformations, congenital heart disease, short 
stature and an elevated risk of leukemia and other cancers. 
In contrast, more than 80% of patients with LEOPARD 
syndrome (lentigines, EKG abnormalities, ocular 
hypertelorism, pulmonary stenosis, abnormal genitalia, 
retardation of growth, and deafness) harbor heterozygous 
germline inactivating (phosphatase-defective) mutations 
in PTPN11, despite the overlapping clinical presentations 
between this syndrome and those with Noonan syndrome 
[6,7]. Both conditions are associated with an increased risk 
for malignancies, including leukemia and neuroblastoma 
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[5,8], suggestive of a phosphatase-independent role 
of SHP2 in cancer pathogenesis. In addition, somatic 
GOF mutations in PTPN11 are reported in juvenile 
myelomonocytic leukemia (JMML, 35%), myelodysplastic 
syndrome (MDS, 10%), sporadic acute myeloid leukemia 
(AML, 4%) [9] and solid tumors [10], making PTPN11 
the first identified proto-oncogene among tyrosine 
phosphatases [11].

The Role of SHP2 in Dysregulated RTK/
RAS/ERK Signaling in Cancer

SHP2 has been implicated as a major contributor to 
regulation of RTK/RAS/ERK signaling [12,13], but how 
exactly the SHP2 phosphatase promotes activation of RAS/
ERK signaling has been controversial. Functional studies 
demonstrate that SHP2 enhances RAS activation through 
activated protein tyrosine kinases or cytokine receptors 
[14]. SHP2 is required for sustained RAS/ERK signaling 
activation via multiple phosphatase-dependent and 
-independent mechanisms. First, SHP2 reverses negative 
regulators of RAS activation, including dephosphorylation 
and inactivation of Sprouty, as well as inhibition of 
RAS-GAP recruitment, both negative regulators of RAS 
activation [14,15]. Second, dephosphorylation of RAS at 
tyrosine 32, as a direct target of SHP2, increases RAS-
RAF interaction and enhances downstream signaling [16]. 
Third, SHP2 dephosphorylates Src-regulatory proteins 
and leads to Src activation, which in turn promotes RAS/
ERK signaling [17]. More recent evidence implicates the 
role of SHP2 as a scaffolding adaptor providing the major 
GRB2 binding site (phosphorylated Tyr542), which forms 
a functional signaling complex containing SHP2/GRB2/

SOS/GAB1, to promote RAS activation by its guanine 
exchange factor (GEF) [17-19]. However, it has been 
posited that the association of SHP2 with GRB2 is not 
sufficient for full ERK activation, and that phosphorylated 
Tyr580 is also required for sustained ERK signaling in 
response to some growth factors [20].

Considering the emerging role of SHP2 in cancer, 
discovery of small molecule inhibitors targeting SHP2 has 
recently gained significant attention. To our excitement, 
the first SHP2 allosteric inhibitor SHP099 was developed 
in 2015 [21], enabling further mechanistic studies on SHP2 
function in cancer. Compared with the low selectivity/off-
target effect of catalytic/active-site inhibitors targeting 
SHP2 among other PTP [22], the SHP2 allosteric inhibitor 
SHP099 potently and selectively inhibits SHP2 activity 
through stabilization of wild-type SHP2 in the auto-
inhibited/closed conformation [23]. The earliest reports 
identifying novel small molecule inhibitors of SHP2 
(SHP099) suggested that these compounds would be most 
effective in cancer cells driven by a variety of aberrantly 
regulated RTK (including ERBB2, FGFR2, EGFR and 
ALK, among others) [13]. Other studies, however, have 
demonstrated only modest activity of SHP2i as a single 
agent [24], suggesting that as a class, SHP2i may realize 
their full potential as cancer therapeutics when given in 
combination. 

SHP2 inhibition offers a promising therapeutic strategy 
as a means to prevent RTK-driven adaptive and acquired 
resistance to targeted therapy. SHP2 inhibition enhances 
the efficacy of tyrosine kinase inhibitors (TKI), such as 
ALK/EGFR/FGFR inhibitors, in drug-resistant NSCLC 
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Figure 1: Structure of human SHP2. A) SHP2 protein domains as described, including two Src homology domains (N-SH2 and 
C-SH2), and a protein tyrosine phosphatase catalytic (PTP) domain. Critical tyrosine phosphorylation residues (Tyr 542 and Tyr 
580) are indicated. B) Schematic representation of the closed (inactive) and open (active) conformations of SHP2.
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and metastatic breast cancer, in which distinct RTK 
activation mediates adaptive and acquired resistance 
[25-28]. In addition, SHP2 inhibition (or depletion) also 
restores sensitivity to ERK signaling inhibition and has 
additive/synergistic anti-tumor effects when combined 
with KRASG12C/RAF/MEK inhibitors in multiple models 
of cancers driven by hyperactivated RAS, including KRAS-
mutant pancreatic, lung and colorectal cancers, KRASWT-
amplified gastroesophageal cancer, RASWT triple negative 
breast cancer (TNBC) and ovarian cancers, NRAS-mutant 
neuroblastoma, NF1-deficient MPNST, and BRAF-mutant 
colon and thyroid cancers, among others, through blocking 
signal transduction from most RTK that are reactivated 
through loss of negative feedback following ERK pathway 
inhibition [19,24,26,29-38]. 

The Role of SHP2 in Modulating Immune 
Signaling Pathways

Included in the diverse roles of SHP2 is that of modulating 

immune signaling responses through interactions with 
PD-1/PD-L1 receptor/ligand signaling. SHP2 is considered 
a central molecule downstream of inhibitory immune 
receptors. Inhibitory receptors are expressed by immune 
cells and regulate their function in diverse contexts. Upon 
binding of PD-L1, PD-1 becomes phosphorylated at its 
immunoreceptor tyrosine-based inhibitory motif (ITIM) 
and immune receptor tyrosine-based switch motif (ITSM), 
and then ITSM binds C-SH2, recruiting SHP2 to PD-1; 
while ITIM binds N-SH2, displacing it from the catalytic 
pocket and activating SHP2 [39]. Extensive investigation 
has been carried out to identify the mechanistic 
contribution of PD-1/PD-L1/SHP2 to T-cell inactivation. 
One recent study demonstrated that the costimulatory 
receptor CD28 is preferentially dephosphorylated and 
inactivated by SHP2 in the PD-1/PD-L1/SHP2 micro-
cluster, thereby leading to T-cell inactivation mediated by 
PD-1 [40] and promoting immune escape by cancer cells 
(Figure 2). However, the role of SHP2 in PD-1 signaling 
was challenged by another study, which found that SHP2 

 

 

 

  
Figure 2: This figure depicts main cancer cell and immune cell signaling pathways regulated by SHP2. 1. SHP2 is a critical 
regulator of the RAS-ERK pathway leading to rapid cell proliferation and cancer growth. 2. SHP2 is an integral downstream 
effector for the T cell receptor, the CD28/B7 and the PD-1/PD-L1 pathways resulting in deactivation and exhaustion of T cells. 
3. SHP2 is a pivotal effector for the CSF-1/CSF-1R axis culminating in macrophage immunosuppressive polarization and poor 
phagocytosis. SHP2 inhibition is as a promising anti-cancer therapy given its multiple roles in the function/fate of tumor cells and 
its immune modulatory properties. 

RTK: Receptor Tyrosine Kinase; SHP2: Src Homology region 2 domain-containing Phosphatase-2; Grb2: Growth factor receptor-
bound protein 2; Gab2: Grb2 associated binding protein 2; SOS: Son of sevenless, RAS guanine nucleotide exchange factor; 
GTP: Guanosine-5’-triphosphate; ERK: Extracellular signal–regulated kinase; CDK4/6: Cyclin-dependent kinase 4/6; PD-1: 
Programmed cell Death-1; PD-L1: Programmed cell Death Ligand 1; APC: Antigen Presenting Cell; MHC1: Major Histocompatibility 
Complex 1; B7-1/2: Peripheral membrane proteins 1 and 2; CD28: Cluster of Differentiation 28; CTLA-4: Cytotoxic T-lymphocyte-
associated protein 4; ZAP70: Zeta chain of T cell receptor Associated Protein kinase 70; BTLA: B- and T-lymphocyte-associated 
protein; HVEM: Herpes Virus Entry Mediator; CSF-1: Colony Stimulating Factor 1; CSF-1R: Colony Stimulating Factor 1 Receptor. 
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is dispensable for establishing T-cell exhaustion as well 
as for PD-1 signaling in vivo, supported by the evidence 
that specific SHP2 depletion in CD8+ T lymphocytes only 
moderately improves their proliferation and results in 
decreased polyfunctionality and compromised cytotoxic-
related cytokine production upon chronic infection. 
Mice with SHP2-deficient T-cells showed no significant 
improvement in controlling immunogenic tumors and 
demonstrated responses to α-PD-1 treatment similar 
to controls, suggesting the existence of redundant or 
alternative mechanisms complementing SHP2/PD-1 
signaling [41]. Furthermore, another report provides 
evidence supporting the existence of compensatory 
mechanisms by which 1) PD-1 selectively recruits SHP2; and 
2) BTLA preferentially recruits SHP1, and both suppress 
T cell signaling. Intriguingly, PD-1 and BTLA potently 
inhibit T-cell proliferation and cytokine production in 
SHP1/2 double-deficient primary T-cells, suggesting that 
PD-1 and BTLA suppress T-cell signaling only partially 
through SHP1/2 [42], and SHP2 depletion or inhibition 
limits the durability of PD-1 signaling. Further studies are 
needed to investigate the bypass mechanisms and design 
combinatorial strategies to target T-cell exhaustion. SHP2 
has also been implicated in the response to IL-2 and IL-
15 [43-48]. IL-2 is essential for regulatory, effector CD4+, 
and effector CD8+ T-cells. IL-15 is critical to the survival of 
memory CD8+ T-cells and for development, survival, and 
activation of NK cells, two cytotoxic immune cell subsets 
which are central to immunity against intracellular 
pathogens and cancers.

In contrast to studies on T cell-specific SHP2 depletion, 
however, an abundance of evidence points to additional 
roles of SHP2 in immunomodulation beyond PD-1 
checkpoint signaling in T-lymphocytes. Preclinical studies 
support the role of SHP2 inhibition in adaptive and 
innate immunity. SHP2 inhibition provokes increases in 
intratumoral CD8+ T-lymphocytes and tumor-associated 
B-lymphocytes, augmenting anti-tumor immunity [38,49]. 
Recent findings have emerged regarding the role of SHP2 in 
modulating the myeloid compartment as well [26,38,50]. 
Myeloid cells are the most abundant white blood cells in the 
human body and they are present practically in all tissues. 
They are key regulators of tissue homeostasis and tumor 
microenvironments [51]. Tumor-associated macrophages 
(TAM– M2 macrophages) that infiltrate tumor tissues 
are driven by cancer-derived cytokines to acquire a 
polarized immunosuppressive phenotype, which in turn 
de-activates the T cell compartment [52-54]. The salient 
feature of these cells is their ability to inhibit T cell function 
and their high density in the tumor microenvironment 
(TME) is associated with poor prognosis and survival 
across multiple cancer types [51,55,56]. Moreover, 
tumor-associated myeloid cell infiltration is associated 
with clinical resistance to immunotherapy [57]. M2 
macrophages exhibit potent T-cell suppressive phenotypes 

in vitro and in vivo [52,58,59]. SHP2 inhibition in RAS-
driven cancers results in depletion of immunosuppressive 
M2 macrophages through attenuation of CSF1R signaling 
[26,50], which is essential for T-cell suppression by 
immunosuppressive TAM [60] within the TME. These 
findings raise the possibility that SHP2 inhibition relieves 
T cell suppression largely through reduction of M2 
macrophages via CSF1R signaling, and partially through 
PD-1 signaling, where SHP2 appears dispensable due 
to functionally redundant mechanisms. Interestingly, 
despite modest effect of PD-1 blockade on M2 TAM, 
further reduction of M2 macrophages is elicited with 
combined SHP2i and PD-1 blockade through an undefined 
mechanism [26,50], which may be the potential basis 
for additive anti-tumor activity of combined SHP2i and 
anti-PD-1. Furthermore, combined SHP2i and anti-PD-1 
treatment also demonstrates synergistic effects on colon 
cancer models that are sensitive to checkpoint blockade 
[49,50]. In models of pancreatic ductal adenocarcinoma 
(PDAC), a cancer type with limited response to checkpoint 
blockade, the antitumor immunity and efficacy of SHP2 
and KRASG12C inhibition can be enhanced by anti-PD-1 
[38,61], implicating a combination benefit of immune 
checkpoint inhibitors (ICI) in PDAC treatment. A growing 
understanding of the mechanism of action of SHP2 in these 
immune regulating cascades is therefore relevant and 
timely. Overall, the effects of SHP2i on the TME remain 
to be clarified and could certainly have implications for 
the development of synergistic combinations in antitumor 
therapy. 

The Effects of RAS Pathway Inhibition on 
Immune Modulation

RAS/ERK signaling activation is associated with 
significantly reduced levels of tumor-infiltrating 
lymphocytes (TIL), thereby potentially facilitating immune 
evasion by the tumor cells [62]. ERK signaling inhibition 
therefore alleviates a local immunosuppressive phenotype, 
and promotes TIL homing to the tumor [63]. Distinct effects 
on immune cell modulation in the TME due to inhibition 
of different nodes in the RAS/ERK signaling pathway have 
been observed. Similar to the modulatory effect of SHP2i 
on TME, KRASG12Ci also improves anti-tumor immunity 
in KRAS-mutant cancers through an increase in CD8+ 
T-cells and cytokine production [38,64], and decrease in 
immunosuppressive CD4+ T-cells and CD11b+ myeloid 
cells [38]. Likewise, BRAFi induces a favorable TME 
through multiple mechanisms, enhancing T-cell specific 
recognition of BRAFV600-mutant melanoma in vitro and in 
patients, with no obvious effects on lymphocyte function 
[65-69]. MEKi can also improve tumor immunogenicity 
via enhancement of MHC-1 expression [70]. However, 
in contrast to selective mutation-specific inhibitors that 
exclusively suppress RAS/ERK pathway in tumor cells, 
the effects of broad ERK signaling inhibition using MEKi 
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on T-cell function have been perplexing and somewhat 
contradictory, as T-cell immune response is at least 
partially dependent on RAS/ERK signaling downstream 
of the TCR. Two early reports revealed that MEKi 
impairs peripheral blood derived T-cell function through 
reduction in proliferation and cytokine secretion [65,71]. 
Nevertheless, this notion was supplemented with follow-
up studies demonstrating that MEKi promotes recruitment 
of TIL and increases antigen specific CD8+ T cells within 
the tumor; whereas markedly inhibits naïve CD8+ T-cell 
priming which rebounds after the early onset of the 
suppression, in tumor-draining lymph nodes [72,73]. A 
recent study extended these observations and further 
explored the mechanistic basis of the immunomodulatory 
effects of MEKi on TME. MEKi treatment reprograms 
naïve CD8+ T-cells into stem cell-like memory T-cells with 
potent antitumor activity, through cell cycle inhibition 
and metabolic enhancement [74]. Additionally, given 
the potential inhibitory effect of MEKi on T cell function, 
an alternative regimen with intermittent, rather than 
continuous, exposure to MEKi was found to induce 
T-cell activation and anti-tumor immunity [75]. Despite 
this apparent paradox, MEKi still further enhances anti-
PD-1/PD-L1/CTLA4 immunotherapy through enhanced 
T-cell activation [62,63,72,75,76]. Based on the effects of 
SHP2i and the equivocal impact of MEKi on innate and 
adaptive immunity, consequently, additional studies are 
needed to further explore the effectiveness and toxicity 
of combined MEK and SHP2 inhibition, either alone or 
in combination with immunotherapy. These studies will 
need to be carefully optimized, using immune-competent 
syngeneic and/or genetically engineered mouse models, 
careful study of dose and treatment schedules to achieve 
optimal efficacy and minimize toxicity, and ultimately 
select combinations and regimens that hold the most 
promise for achieving superior anti-tumor responses.

The Combination Partner SHP2 as a 
Promising Co-Target in MPNST and Other 
Cancers

NF1 and CDKN2A tumor suppressor losses are genomic 
hallmarks found in the majority of human MPNST 
(90%, and 60-80%, respectively) [77]. As loss of NF1 is 
a major driver of RAS-ERK signaling in many cancers, 
MEK inhibition seems a logical focus for the design of 
combination strategies in MPNST and other tumors with 
loss of NF1. MEKi alone, however, has limited anti-tumor 
activity, leading to the notion that combinations that 
target the adaptively upregulated molecules that emerge 
upon loss of ERK-induced negative feedback should be 
effective. Our data suggested that a number of tyrosine and 
serine/threonine kinases become adaptively upregulated 
in response to MEKi, leading to challenges in the design 
of MEKi plus TKI combination strategies, as genomic or 
other predictive biomarkers to identify the adaptively 

changed RTK are not readily discernible [24,32]. In order 
to overcome this challenge, we posited that inhibition 
of the central node of convergence between the RTK 
and RAS recruitment to the membrane and activation – 
SHP2 – would serve as a viable strategy. Indeed, in vitro 
and in vivo analysis of the MEKi/ SHP2i combination 
demonstrated more profound and durable inhibition of 
ERK signaling, improved anti-proliferative effects and 
synergy in vivo [24]. The success of this combination in 
patients with MPNST remains to be seen.

In addition to CDKN2A deletion, hyperactivation/ 
and/or upregulation of cyclin dependent kinases (CDK) 
and D-type cyclins, leading to inactivation of the RB1 
tumor suppressor, occurs in the majority of MPNST, 
and suggests that small-molecule inhibitors of CDK4/6 
(CDK4/6i) may be an additional therapeutic strategy [78]. 
However, CDK4/6i elicits a primarily cytostatic phenotype 
and has limited efficacy as a single agent, due to early 
adaptive upregulation of cyclin D1 and subsequent CDK2 
hyperactivation, and other bypass mechanisms such as E2F 
amplification [79-83]. The CDK4/6i ribociclib improves 
the efficacy of SHP2 inhibition in RTK-driven and a subset 
of KRAS-mutant NSCLC and colorectal cancer models, 
and is equally efficacious as the combination of MEKi and 
SHP2i [26]. Despite similar anti-tumor activity, combined 
SHP2i and CDK4i may be a better tolerated regimen, with 
a wider therapeutic index, given the preliminary toxicity 
data reported for MEKi and SHP2i combinations [84]. 
According to our understanding, combined SHP2i and 
CDK4/6i may provide a viable therapeutic approach not 
yet tested in immunocompetent models of MPNST. 

Macrophage infiltrates are abundant in neurofibromas 
and MPNST, accounting for nearly half of the cells within a 
tumor [85]. The tumor promoting and immunosuppressive 
M2 macrophages are dependent on CSF1R signal and 
CSF1R+ TAM correlate with poor survival in many tumor 
types, making this receptor an attractive target to decrease 
these cells [86]. A previous study reported a marked 
depletion of TAM and a shift from M2 to M1 TAM upon 
CSF1R inhibition, and demonstrated the combination 
benefit of co-targeting CSF1R and mTOR using PLX3397 
and rapamycin in an MPNST xenograft model [87], 
which provided a translational basis for the MPNST-
specific prospective phase 2 clinical trial (NCT02584647). 
Preliminary data from this trial reported objective 
responses and durable stable disease in MPNST patients 
treated with PLX3397 and sirolimus [88]. Furthermore, 
combined SHP2i and CSF1Ri demonstrated additive 
anti-tumor activity in CT26 colon syngeneic mice, a 
model known to express high levels of TIL [50]. As such, 
combined SHP2i and CSF1Ri may hold promise as a 
potential treatment strategy for MPNST.

Little is known about the potential roles of immune 
modulating clinical therapeutics in NF1-deficient MPNST. 
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Characterization of TME on a series of MPNST revealed 
overall low PD-L1 expression but significant CD8+ TIL 
presence [89,90]. Given the genomic heterogeneity of this 
tumor type, in several cases, PD-L1 copy number gain/
amplification were also reported [91,92]. There have been 
three single-patient case reports describing anti-tumor 
response to immune checkpoint inhibition in patients with 
MPNST: 1) a patient with metastatic NF1-MPNST harboring 
PD-L1 genomic amplification had a partial response to 
nivolumab [92]; 2) a patient with metastatic MPNST, 
with PD-L1 positivity in the tumor, achieved a complete 
metabolic response to pembrolizumab [93]; and 3) a patient 
with MPNST with significant PD-L1 expression (tumor 
proportion score of 90%) had a complete tumor response 
to pembrolizumab and procarbazine [94], suggestive 
of a potential clinical benefit to immune checkpoint 
blockade in a molecularly-defined subset of MPNST. 
Three phase 1/2 clinical trials are ongoing using immune 
checkpoint inhibitors (anti-PD-1 and anti-CTLA4) in 
patients with MPNST, including the use of pembrolizumab 
(NCT02691026), or the combination of nivolumab and 

ipilimumab (NCT02834013 and NCT04465643). Given 
the preclinical additive combination benefits of SHP2i/
KRASG12Ci plus anti-PD-1 in KRAS-mutant PDAC [38] and 
SHP2i plus anti-PD-1/anti-CTLA-4 in immunocompetent 
CT26 colon mouse model [50], additional investigation 
into SHP2i plus anti-PD-1/anti-CTLA-4 in MPNST is also 
of significant interest and an area of current pre-clinical 
investigation in MPNST. 

SHP2 Inhibitor-based Therapeutics in 
Clinical Development

At the time of this manuscript preparation, seven type 
II SHP2 allosteric inhibitors, based on the structure of 
SHP099, are currently under clinical assessment for 
adult advanced/metastatic solid tumors, including: 
TNO155 (NCT03114319, NCT04000529, NCT04330664, 
NCT04699188, NCT04294160; Novartis) [26,95], RMC-
4630 (NCT03634982, NCT03989115, NCT04185883, 
NCT04418661; Revolution Medicines/ Sanofi) [18,50,84], 
JAB-3068 (NCT03565003 and NCT03518554) and JAB-

SHP2 inhibitor Combination partner (target) Phase Identifier Condition Sponsor

TNO155

single agent; nazartinib 
[EGFR] 1 NCT03114319

Advanced EGFR-mutant or 
KRAS G12-mutant NSCLC, 
Esophageal SCC, HNSCC, 
Melanoma

Novartis

spartalizumab [PD-1]; 
ribociclib [CDK4/6] 1b NCT04000529

NSCLC, HNSCC, 
Esophageal SCC, GIST, 
CRC

Novartis

MRTX849 [KRAS G12C] 1/2 NCT04330664 Advanced solid tumors 
with KRAS G12C mutation

Mirati 
Therapeutics; 
Novartis

JDQ443 [KRAS G12C]; 
spartalizumab [PD-1] plus 
JDQ443 [KRAS G12C]

1/2 NCT04699188 Advanced solid tumors 
with KRAS G12C mutation Novartis

dabrafenib [BRAF V600E] 
plus LTT462 [ERK1/2] 1 NCT04294160 Advanced or metastatic 

BRAF V600 CRC Novartis

RMC-4630

single agent 1 NCT03634982 Advanced relapsed or 
refractory solid tumors

Revolution 
Medicines/Sanofi

cobimetinib [MEK]; 
osimertinib [EGFR] 1b/2 NCT03989115

Relapsed/refractory solid 
tumors; advanced or 
metastatic EGFR-mutant 
NSCLC

Revolution 
Medicines/Sanofi

sotorasib [KRAS G12C] 1 NCT04185883 Advanced solid tumors 
with KRAS G12C mutation Amgen

pembrolizumab [PD-1] 1 NCT04418661

Advanced or metastatic 
solid tumors with 
KRAS mutations and 
amplifications, BRAF class 
3 mutations, or NF1 LOF 
mutations

Sanofi/Revolution 
Medicines
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3312 (NCT04121286 and NCT04045496) (Jacobio/ 
AbbVie), RLY-1971 (NCT04252339; Relay Therapeutics), 
BBP-398 (NCT04528836; Navire Pharma/ BridgeBio) 
[28], and ERAS-601 (NCT04670679; Erasca). Multiple 
clinical trials of SHP2 inhibitors as single agents, and 
several which combine SHP2i with inhibitors of semi-
autonomous oncogenic partners, such as EGFR mutants, 
MEK, CDK4/6, PD-1, and KRASG12C, are ongoing (Table 
1). Recently, anti-tumor activity of dual intermittent 
dosing of RMC-4630 (SHP2i) and cobimetinib (MEKi) 
in patients with KRAS mutant colorectal cancer has been 
studied, with acceptable tolerability based on preliminary 
reports. Among these, preliminary evidence revealed an 
unconfirmed partial response (30% reduction in tumor 
burden at end of cycle 2; 25% reduction at end of cycle 
4; progressive disease at 6 months) in a patient with 
KRASG12D colorectal cancer [84]. Future studies of SHP2 
combinations may ideally then focus on optimal dosing 
schedules and potential combinations to achieve the fine 
balance needed between efficacy and toxicity in patients 
with RAS-driven cancers.

Closing Remarks and Future Perspective

SHP2 has recently taken a well-deserved center-stage 

role in cancer therapeutics, owing to its multifaceted roles 
directed toward growth-promoting signaling pathways 
within the tumor cells, as well as the surrounding 
immunosuppressive microenvironment. Further 
investigation into the various functional roles of SHP2 will 
be critically instructive in realizing its full potential as an 
anti-cancer therapy. Future studies of combinations, as 
well as preclinical and clinical investigation focused on the 
mechanisms of resistance to allosteric SHP2 inhibitors, 
will be critically informative as these agents advance in 
clinical trials. Preclinical studies demonstrate relative 
insensitivity to SHP2i associated with oncogenic RAS or 
RAF mutations; and intrinsic or feedback activation of 
FGFR in response to inhibition of ERK signaling [13,19,96]. 
FGFR signal may promote the open active conformation of 
SHP2, leading to resistance to allosteric SHP2 inhibitors 
[96]. An alternative therapeutic concept is the utilization of 
RAS-SOS1 interaction inhibitors, such as BI-3406, RMC-
5845 and BAY-293 [97,98] to block adaptive activation 
of FGFR upon ERK signaling inhibition in some cellular 
context. Overall, biochemical and genomic exploration 
of the preclinical and clinical mechanisms that limit the 
anti-tumor efficacy of SHP2 inhibitors, promises to inform 
future development of novel combination strategies and 
new generations of allosteric SHP2 inhibitors.

JAB-3068

single agent 1/2a NCT03565003
NSCLC, HNSCC, 
Esophageal SCC, other 
metastatic solid tumors

Jacobio/AbbVie

single agent 1 NCT03518554
NSCLC, HNSCC, 
Esophageal SCC, other 
metastatic solid tumors

Jacobio/AbbVie

JAB-3312 

single agent 1 NCT04121286

Advanced solid tumors 
including NSCLC, CRC, 
PDAC, Esophageal SCC, 
HNSCC and breast cancer

Jacobio/AbbVie

single agent 1 NCT04045496

Advanced solid tumors 
including NSCLC, CRC, 
PDAC, Esophageal SCC, 
HNSCC and breast cancer

Jacobio/AbbVie

RLY-1971 single agent 1 NCT04252339 Advanced or metastatic 
solid tumors

Relay 
Therapeutics

BBP-398 single agent 1/1b NCT04528836

Advanced KRAS G12C or 
EGFR-mutant NSCLC; 
solid tumors with 
other MAPK-pathway 
alterations.

Navire Pharma/
BridgeBio

ERAS-601 single agent; a MEK inhibitor 
(MEK) 1/1b NCT04670679

Advanced or metastatic 
solid tumors with specific 
molecular alterations

Erasca

NSCLC: Non-small Cell Lung Cancer; SCC: Squamous Cell Cancer; HNSCC: Head and Neck Squamous Cell Cancer; GIST: 
Gastrointestinal Stromal Tumors; CRC; Colorectal Cancer; PDAC: Pancreatic Ductal Carcinoma; LOF: Loss of Function.

 Table 1: SHP2 inhibitor-based therapeutics in clinical development for cancer.
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