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Diabetes mellitus is one of the most common chronic 
diseases that affect people of all ages and races worldwide. 
Its prevalence is rapidly increasing, making it one of the 
most significant contributors to healthcare costs [1]. An 
important clinical feature of diabetes is its association with 
chronic tissue complications. Treatment in this case aims 
to either cure or delay the progress of tissue damage and 
preserve the function of the affected organ.

Diabetic nephropathy (DN) is a serious complication of 
diabetes mellitus, accounting for about 40% of end-stage 
renal disease (ESRD). It is responsible for significant 
morbidity and mortality, both directly by causing ESRD 
and indirectly by increasing cardiovascular risk [2]. The 
pathogenesis of DN appears to be multifactorial with 
dyslipidemia as a comorbidity, which may influence the 
development and progression of damage in the diabetic 
kidney [3]. Results from interventional studies revealed 
the possibility that antihyperlipidemic agents, such as 
statins, have a better effect on diabetic nephropathy 
through improvement of albuminuria and slowing down 
loss of renal function [4]. Current evidence points toward 
the need to prescribe statins in type-2 DM before a major 
decline in kidney function occurs. Statins have also been 
used for preventing and treating cardiovascular and 
cerebrovascular diseases, with relatively low incidence of 
adverse side effects as compared with other lipid-lowering 
drugs [5].

Although all statins share a common mechanism of 
action, they differ in terms of their chemical structures, 
pharmacokinetic profiles, and lipid-modifying efficacy. 
The chemical structures of statins govern their water 
solubility, which in turn influences their pharmacokinetic 
behaviour [6], where atorvastatin, fluvastatin, lovastatin 
and simvastatin are relatively lipophilic compounds, while 
pravastatin and rosuvastatin are more hydrophilic [7]. 

These differences are reflected in their relative efficacy 
and possibly in their parenchymal or muscular toxicities. 
The impact of the antagonism of statins on a crucial 
step of intermediary metabolism leads to a reduction of 
cholesterol biosynthesis as well as to additional pleiotropic 
effects [8]. Pleiotropic mechanisms of statins, including 
actions on cell proliferation/apoptosis and oxidative 
stress may exert beneficial effects independent of their 
lipid-modifying properties [9]. Although several studies 
have shown that statins suppress the progression of DN, 
few reports have directly compared the renoprotective 
effects among different statins [10-12]. On the other hand, 
administration of statins may have adverse side-effects, 
including myopathy [13], renal toxicity [14], and incident 
diabetes [15]. However, the cardiovascular benefits of 
statins outweigh their increased risk of new-onset diabetes 
[16,17].

The use of pravastatin, fluvastatin, rosuvastatin, and 
pitavastatin may be preferred when concurrent therapy 
with a strong inhibitor of the liver isoenzyme cytochrome 
P450 3A4 (CYP3A4) cannot be avoided. Such inhibitors 
include clarithromycin, telithromycin. nephazodone, 
ketoconazole, and many antiviral drugs. Atorvastatin, 
lovastatin, and simvastatin may also be substrates 
for P-glycoprotein (P-gp) which functions as trance-
membrane efflux pump; therefore, drugs that inhibit P-gp, 
including cyclosporine and diltiazem, may increase levels 
of these statins [18,19]. Although most other lipid lowering 
agents can be used safely with statins in combination 
therapy in CKD patients, the fibrates (for example 
fenofibrate and gemfibrozil) require both adjustment in 
dose and careful monitoring because possible increased 
rise in rhabdomyolysis when combined with simvastatin 
or atorvastatin

The inflammatory response has a pivotal role in the 
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pathophysiology of diabetic nephropathy, where pro-
inflammatory mediators such as interleukin1-β (IL-1β) and 
tumour necrosis factor-α (TNF-α) are strongly correlated 
with the onset and progress of renal damage in diabetic 
subjects [20,21]. Thus, controlling excessive inflammation 
has therapeutic potential of inhibiting progressive kidney 
fibrosis. The role of IL-1β seems to be more specific than 
other cytokines in the inflammatory process and inhibitors 
of IL-1β are considered as promising therapeutic options 
to improve the renal outcome of patients with diabetic 
nephropathy [22]. 

In experimentally streptozotocin-induced diabetes in a rat 
model disturbances in the levels of inflammatory markers 
were observed. The mean level of IL-1β, was several times 
that of normal controls [23,24]. These high IL-1β levels 
were significantly attenuated, approximately, to the same 
levels, by treatment with either simvastatin or rosuvastatin 
suggesting their protective potential against diabetes-
induced renal injury. Such results are in accordance with 
other studies, where both statins were found to exhibit 
similar anti-inflammatory activity within in vitro models 
of neuroinflammation [25,26]. The increase in the pro-
inflammatory IL-1β was accompanied by a significant 
increase in renal levels of IL-10, which is a potent anti-
inflammatory agent by virtue of its ability to suppress 
genes for pro-inflammatory cytokines [27]. It is probable 
that such increase represented a defense mechanism 
against the high levels of the pro-inflammatory mediators, 
in the diabetic kidney. The biological activities of IL-10, 
in modulating inflammation, have been proposed to be 
caused, in part, by down regulation of pro-inflammatory 
cytokines and their receptors and upregulation of cytokine 
inhibitors [28]. By shifting the pro/anti-inflammatory 
balance towards the normal state, statins promote the 
restoration of homeostasis through the resolution of 
inflammation [29].

An increase in the local production of renal 
prostaglandins (PGs) has been observed in clinical and 
experimental diabetic nephropathy and PG synthesis is 
augmented in the glomeruli of streptozotocin-induced 
diabetic rats [23,24,30]. The overproduction of PGE2 
plays an important role in the end organ damage in 
diabetes [31]. It was suggested that IL-1β preferentially 
stimulates the production of prostaglandins and many of 
its biological activities are probably due to such increase 
in PGE2 production [27]. The decrease of IL-1β level, 
following treatment with simvastatin and rosuvastatin, 
was accompanied by a similar fall in PGE2 levels with no 
significant difference between the two drugs [23]. Similarly, 
pretreatment with either of the two drugs was able to 
significantly reduce lipopolysaccharide (LPS)-induced 
PGE2 production in microglial-like cells [25]. Fibrosis, in 
particular, is a prominent pathological hallmark of many 
forms of chronic kidney disease and is considered to be 

a central contributing factor for its progression towards 
end-stage renal disease [32]. Transforming growth 
factor-β (TGF-β) has been implicated as a major regulatory 
cytokine in CKD, especially in fibrosis development. 
Reduced TGF-β signaling activity has been shown to be 
associated with improved renal outcomes in experimental 
animal studies [33]. Serum TGF-β levels, in STZ-induced 
diabetic rats, were significantly increased compared with 
normal control rats [23]. Transforming growth factor-β 
signaling pathway has been shown to play a critical role in 
regulation of the extracellular matrix (ECM) accumulation 
of the kidney to promote the renal glomerulosclerosis 
[34] and inflammation in diabetic rat model [35]. Its 
levels and signaling are enhanced in renal cells during the 
progression of diabetic nephropathy [36]. The effective 
decrease, of serum TGF-β by both simvastatin and 
rosuvastatin is indicative of their potential antifibrotic and 
hence renoprotective effects [23]. This may be a pointer for 
possible attenuation of the progression of kidney damage.

Oxidative stress has the ability to act as a trigger, 
modulator, and link within the complex web of pathological 
events that occur in DN. In this respect various 
molecular events underlie and connect the metabolism, 
inflammation, and the oxidation [37]. Increased levels of 
inflammatory cytokines, like TGF- β, increase intracellular 
ROS production in mesangial and tubular epithelial cells 
[38]. Furthermore, there is increasing evidence that ROS, 
inflammation and fibrosis promote each other and are 
part of a vicious connection leading to development and 
progression of CVD and kidney disease in diabetes [39].

In animal experiments, oxidative stress was clearly 
shown in the diabetic kidney, by significantly decreased 
levels of reduced glutathione (GSH) and reduced/oxidised 
(GSH/GSSG) glutathione ratio. On the other hand, there 
were substantial increases in the levels of GSSG and MDA. 
However, the level of total glutathione was not modified 
either by induction of diabetes or by treatment with statins. 
This may indicate that the synthesis of glutathione was not 
affected by these manipulations and the problem lies with 
the reduction of GSSG. These changes were shifted toward 
the non-diabetic value following treatment with statins 
[23].

Excessive reactive oxygen species (ROS) production, 
in diabetes, can accelerate oxidative damage to 
macromolecules, including lipids and proteins, as well 
as to DNA. 8-Hydroxydeoxyguanosine (8-OHdG) a ROS-
induced modification of a purine residue in DNA, is a 
sensitive index of oxidative DNA damage [40]. Previous 
studies demonstrated that urinary levels of 8-OHdG 
were significantly elevated in several models of diabetic 
nephropathy [41,42], and they correlate significantly with 
the severity of tubulointerstitial lesions [33]. However, 
the role of serum 8-OHdG, in the pathogenesis of diabetic 
nephropathy, has not been identified but was clearly 
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demonstrated, as a significantly higher serum levels of 
8-OHdG, were observed in diabetic over normal control 
rats, and were effectively decreased by treatment with 
either simvastatin or rosuvastatin [23].

The antioxidant effect of both simvastatin and rosuvastatin 
was documented in experimental diabetic nephropathy 
[33,43,44]. Rosuvastatin seems to possess a more 
significant antioxidant effect, as indicated by improved 
GSH/GSSG ratio. While rosuvastatin had a more beneficial 
effect on reduced GSH levels, the antioxidant effect of 
simvastatin was more pronounced on serum 8-OHdG 
levels. These findings confirmed the renoprotective 
effect of treatment with either statin through attenuating 
oxidative stress damage in renal tissues of diabetic rats 
[23]. The levels of serum cystatin C; a glomerular filtration 
marker [45], were significantly elevated in diabetic rats 
as compared to normal non-diabetic controls [23]. The 
rate of progression from moderate to severe reductions 
in GFR is often proportional to the extent of interstitial 
fibrosis and tubular atrophy. Therefore, elevated serum 
cystatin C would be a strong predictor of diabetic 
nephropathy progression [45]. In experimental diabetes, 
both simvastatin and rosuvastatin significantly reduced 
serum cystatin C levels [23]. In patients with  diabetic 
nephropathy, rosuvastatin was reported to effectively 
decrease serum cystatin C levels, independent of blood 
pressure and lipid levels [46,47]. Several statins were 
reported to delay the progression of diabetic nephropathy 
as indicated by their significant lowering of Cyst-C [12].

Apoptosis is frequently observed histologically in DN 
[48,49], where it contributes to nephropathy development. 
Increased oxidative stress and increased levels of 
inflammatory cytokines may also enhance the apoptosis 
levels in DN [50]. When the cell detects an apoptotic 
stimulus, such as DNA damage or metabolic stress, the 
intrinsic apoptotic pathway is triggered and mitochondrial 
cytochrome c is released into the cytosol [51]. Attenuation 
of the high levels of this parameter is therefore expected to 
be an indicator of improvement in renal function and slow 
progression of kidney disease. 

Slowing renal function decline is one of the main areas 
of focus in diabetic nephropathy research, and effective 
strategies are urgently needed to prevent diabetic kidney 
disease progression.
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